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@ What is the problem: CMDP

@ Why is this problem important (Al safety)
Current results

Environments

A need for a set of benchmarks

Existing Algo 1: Constrained Policy Optimization
Existing Algo 2: Lyapunov-based safe RL
Intuition behind the improvement

Proposed method: Projected PPO

Experimental results
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Conclusion
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Motivation: Al safety

Machine Learning is gaining momentum and affecting our lives, sometimes
causing unintended side effects

@ Short-term (right now): adversarial examples (1), data poisoning
@ Long term (next 5-10 years): safe exploration(2), scalable oversight
© Longer term (7): Artificial General Intelligence, value alignment (3)

At each level there is a need for a trade-off between right performance
(solving the problem) and causing no harm

Practical goal: developing systems which learn without causing harm to
the environment (e.g. a copter)
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Problem setting: Constrained MDP (4)

@ Continuous set of states S

@ Finite set of actions A

@ Environment transition probabilities p(s’|s, a)

© (Stochastic, stationary) policy: mapping 7: S — AA*
© Reward: a function R: § x A — AR

@ Return for reward:

o
Jr(m) = Epesr Y V' Re
t=0

*Distribution over A
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Problem setting: Constrained MDP (4)

Continuous set of states S

Finite set of actions A

Environment transition probabilities p(s’|s, a)
(Stochastic, stationary) policy: mapping 7: S — AA*
Reward: a function R: § x A - AR

Return for reward:

000000

o
Jr(m) = Epesr Y V' Re
t=0

Cost: a function C: S x A — AR
Return for cost:

© 0

Je(m) =Epon »_7'Ce
t=0

*Distribution over A
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Problem setting: Constrained MDP (4)

Continuous set of states S

Finite set of actions A

Environment transition probabilities p(s’|s, a)
(Stochastic, stationary) policy: mapping 7: S — AA*
Reward: a function R: § x A - AR

Return for reward:
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o
Jr(m) = Epesr Y V' Re
t=0

Cost: a function C: S x A — AR
Return for cost:

© 0

Je(m) =Epon »_7'Ce
t=0

@ Want to solve: max Jr(7) s.t. Jo(7) < Crax
K

*Distribution over A
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Existing results

Success story: automatic quadcopter controller tuning(5)
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Project proposal

© Creating a set of benchmark environments
@ Implementing existing algorithms
© Comparing existing algorithms

@ Improving one of them and testing it

Sergei Volodin (EPFL) PPPO for Safe RL July 22, 2021 7 /19



Environments used

In papers (6):
@ Circle: reward for running in a circle, constraint: stay in a smaller
circle
@ Gather: collecting green apples, avoiding red bombs
© Point, Ant, Humanoid from MuJoCo

(a) Humanoid-Circle (b) Point-Gather

Figure 2. The Humanoid-Circle and Point-Gather environments.
In Humanoid-Circle, the safe area is between the blue panels.

Sergei Volodin (EPFL) PPPO for Safe RL July 22, 2021 8 /19



| use CartPole, InvertedPendulum, InvertedDoublePendulum because it is
faster to train.

Planned to switch to more complex environments
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No unified set of environments, everybody codes their own. Need an
open-source extension for Gym?

RL: OpenAl Gym

Safe RL: ?
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No unified set of environments, everybody codes their own. Need an
open-source extension for Gym?

RL: OpenAl Gym

Safe RL: ?

Have modular code for safe CartPole right now
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Constrained Policy Optimization (6)

Have estimated policy gradient for reward g, and for constraint g.. Have

estimated constraint return J¢
Trivial solution: g (6 —6p) — maxs.t. gl (0 —00) + Jc < Cmax, 076 < e.

Using KL-divergence gradient instead: g,/ ( — ) — max s.t.
2
gCT(9 — 00) + Jc < Grax, %DKL(”T(G)HT((QI()) <e
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© Has a theoretical guarantee of the form "if § is low enough, and
second (third) order terms are small, the algorithm finds an
improvement”

@ Dual problem is low-dimensional, but still quadratic. Explicit solution
is quite cumbersome

© Fallback option (following natural gradient of the constraint to
decrease it)

@ Existing implementation in RLLab, own implementation
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Lyapunov-based methods (7)

Using Lyapunov functions: T.[L](x) < L(x).
© Have a safe policy 7 as a network

@ Estimating Qr (reward), Q¢ (cost) and Q7 (discounted stopping
time) as networks via Bellman updates

© Constructing a Lyapunov function via Q; = Q¢ + Q1 with

d
Qp
= Crax — %
€ max ~ Qs
Q At each step, solving for 77 Qg — max s.t. (m— TI'k)TQ[_ < ¢ (linear
program)

© Making a supervised step D sp(7|mx) — min'

" Jensen-Shannon Divergence: Disp(p,q) = 3(Dxc(pl|r) + Dki(ql|r)) for
_ 1
r=3(p+q)
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Lyapunov-based methods (7) I

© No implementation with the paper, own implementation

@ After each rollout, need to call TF twice: once to get Qr, @, and
then to do the JSD step

© Chicken-and-egg problem: to train good 7, need good @ and vice
versa.

©

| train first Qs with greedy action-selection and then switch on 7w
training

The paper does not describe how to deal with this

Very unstable, unlearns everything when switching to the next phase.

Approximation to exact problem, so no guarantee for this version

©©0© 00

In case of failure, only doing Bellman update
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Common elements

Boiling down to constrained optimization problem after some
approximation (1st or 2nd order)
CPO and L. have in common:

@ Some step for reward maximization

@ Some first-order hard constraint for cost

© Some ¢ to stay close (implicit in PPO)
Other methods:

© Lagrangian method: simply combining R — AC with a learnable \.
Problem: unstable

@ TRPO
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Proposal: Projected PPO

@ Existing algorithms are quite complex
@ PPO solves the issue of closeness by not encouraging large deviations

© = Making PPO safe makes sense

Proposed method (PPPO):
@ Estimate A for current policy m, constraint gradient g¢ and return J¢
@ Optimize Lppo — m@in s.t. gg(ﬂ — 0x) + Jc < Gnax using Projected
Gradient Descent?
© Fallback option: policy gradient for constraint in case if current is not
safe

Advantage: easier to implement than CPO and Lyapunov, no inner
optimization

#Projection on a half-plane is easy 0’ = 0 — (ng —c)
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Experimental results

@ Considering the problem solved if constraint was violated < 1% of the
training time and a reward of at least 175 was achieved.

Agents are compared by mean over repetitions and max over training
reward for which cost was satisfactory < 100

(2]
© Lyapunov did not converge
o

CPO should show better results, a problem might be in my
implementation
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Figure: Agents: CPO, PPPO, Random on Cartpole-v0, best hyperparameters. 5
repetitions of a single experiment are shown on the same plot.
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Conclusion & Future directions

@ Safe continuous-state RL in CMDPs
@ Proposal to standartize benchmarks
© Re-implementation of existing algorithms and comparison
@ Projected PPO proposal and evaluation on toy experiments
Next:
© Finalizing the safe environment list and publishing it.
@ Theoretical guarantees for PPPO
© Releasing the code for Lyapunov safe RL (so far they do not provide
it).

@ Testing new PPO in more demanding environments
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