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Abstract

We propose Projected Proximal Policy Optimization, a novel Safe Reinforcement
Learning algorithm for Constrained Markov Decision Processes. We show that it
works in a proof-of-concept setting. We compare it with established in that domain
baselines such as CPO and sDQN on simple environments such as Cartpole. We
publish the code with safe RL benchmarks environments as a separate contribution.

1 Introduction

Artificial intelligence solves more and more problems and concerns were raised on whether or not it
will be beneficial (1). Aside from long-term issues (2), already there are pressing problems in AI
safety, for example, adversarial examples or safe exploration (1). For each of these issues, a tradeoff
between performance and not causing unintended harm is required.

In this project we consider the issue of safe exploration, which is one of the two main directions in
safe RL, as indicated in (3). Safe exploration, in its simplest form, means that an agent does not
visit certain dangerous states. It can be achieved for example via constraints on the behavior, which
can be either worst-case or on the expected value. Another possibility is to use inverse (imitative)
reinforcement learning where rewards are learned from the provided "good" behavior which is
assumed to be safe. The field of safe RL already has successful applications. A notable project tunes
parameters of a quadcopter controller without causing harm to it (4; 5).

Currently, there are already methods for safe RL (6; 7). One of the main disadvantages is the
complexity of implementation. All the methods use either an inner optimization problem including
Hessians, or cumbersome closed-form solution to it. The complexity comes from the fact that the
methods need to keep the solution close to the previous one, resulting in a Hessian computation or a
dual problem. We instead circumvent this issue by using the same approach as in Proximal Policy
Optimization (PPO) (8), which does not encourage the policy to differ from the current one instead
of imposing constraints.

Currently, for discrete-state problems, there is a certain number of safe RL benchmarks (9) (i.e.,
benchmarks for which safety criteria which should be met are defined). On the other hand, this
does not appear to be the case in the field of continuous-state problems. In the currently available
research work concerning methods for safe continuous-state RL, the used benchmark environments
are obtained by taking some available RL benchmarks studied in contexts not considering safety
aspects and by then imposing constraints on them. We plan to use a set of simple environments from
OpenAI Gym (Cartpole-v0, others planned) (10), add constraints to them and make the resulting
environments available as open-source code thus going in a direction of standardized continuous-state
safe RL benchmarks.
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Figure 1: (Left) Safe RL environments from (7) (Right) CartPole-v0 environment

Contribution. We first propose a series of benchmarks for safe RL, like (9) but for continuous-state
tasks. Then we compare existing algorithms (7; 6) on our benchmarks. After that we state Projected
Proximal Policy Optimization, a novel safe RL algorithm and compare it with existing algorithms.

Outline. We first describe the motivation behind a set of benchmarks and our proposal in Section 2.
Then we define the CMDP framework in Section 3 and existing agents (CPO, sDQN) in Section 3.1.
Then we define PPPO in Section 3.2. Finally, in Section 4 we compare agents on our benchmarks.
We conclude in Section 5. Appendices A contain the original project proposal and interim reports.

Our code is available at

https://github.com/sergeivolodin/SafeContinuousStateRL

2 Benchmarks for safe RL

In this section we state why safe RL needs standartized benchmarks, and then propose a solution to
this problem.

Previously, algorithms for safe RL were evaluated on environments (7; 6) based on Gym with
additional constraints added to them. Each project re-implements the constraints. However, the issue
with this approach is that implementation might differ and therefore it might be unreasonable to
compare methods just by looking at final results. RL already has standartized benchmarks, one of
them is OpenAI Gym (10). It seems that Safe RL could benefit from a similar contribution.

We propose to create a set of environments for Gym which would follow the decorator design pattern
(11). These would be classes having original Gym environment as a member. Constraint function
would be a member function for that class. Constrained Environments would be instances of an
abstract ConstrainedEnvironment class, which would differ from an original environment class
in the step() method. Specifically, a constrained environment would also return the cost.

Papers (7) uses the following tasks based on Point, Ant and Humanoid environments from MuJoCo.

1. Circle: reward is given for running in a circle, constraint enforces staying in a smaller circle.

2. Gather: collecting green apples, avoiding red bombs (See Figure 1, left).

It is also worth including simpler environments from the classic control domain such as CartPole
(Figure 1, right), LunarLander, etc because it is faster to train the agent on them. In this project, we
only use CartPole. We propose to use x ≤ 0 as a constraint for CartPole (the cart must stay on the
left part) because of its simplicity.

Current progress. Currently, the code implements a ConstrainedEnvironment with CartPole as
an example and a ConstrainedAgent with CPO and PPPO as examples, see saferl.py, costs.py
and baselines.py.

We have defined the environments we will use and now we define the agents.
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Figure 2: Constrained Policy Optimization (7)

3 Theory

In this section, we define the CMDP framework and state the implementation of existing algorithms
as well as of our proposed algorithm
Definition 1. CMDP or an environment is a tuple E = (S,A, γ, x0, R, C,Cmax, P ) where S is a
set of states, A the set of actions, γ ∈ (0, 1] the discount factor, x0 the initial state distribution,
reward-like R,C:S ×A → ∆R1 the reward and cost functions respectively. A stationary policy is
a function π:S → ∆A. The return operator for a reward-like function T is defined as JE,π[T ] =
∞∑
t=0

Est∼π↔EγtT (st) where π ↔ E is the distribution of states in an interaction between π and E .

The goal is to find a stationary policy maximizing reward return with constrained cost return:

π∗ = arg max
π:JE,π [C]≤Cmax

JE,π[R]

In this project, we use A finite and S = Rn finite-dimensional vector space.

3.1 Existing approaches

In this section, we go through different approaches to CMDPs and show their common elements.

Constrained Policy Optimization (7). This algorithm requires a policy network πθ. After collecting
a set of rollouts, it solves the following optimization problem: max gTR∆θ s.t. gTC∆θ+J [C] ≤ Cmax

and ∆θT ∂2

∂θ2DKL(θ′|θ)∆θ ≤ δ for ∆θ = θ′ − θ. Here gR and gC are gradients of J [R] and J [C]
estimated using the Policy Gradient theorem. Figure 5 demonstrates the problem solved. Intuitively,
we want to optimize reward and stay within the cost constraints, and we use a first-order Taylor
expansion to satisfy those. Moreover, we want the new policy πθ′ be not far from the original policy
πθ. This is achieved using the KL divergence. Using a simpler constraint ∆θT∆θ ≤ δ would be
less efficient as a small change in the parameters can change the output probabilities significantly.
The problem of having to compute a Hessian is resolved by switching to the dual space where the
problem becomes 2-dimensional. An explicit solution is presented in the original paper. The method
has a theoretical guarantee of the form "if δ is low enough, and second (third) order terms are small,
the algorithm finds an improvement". In case if it was not possible to solve the problem, the method
follows the natural policy gradient for −J [C] to satisfy the constraint. The authors implement the
method in RLLab, however, we were not successful in running it as RLLab is no longer supported.
We provide our own implementation of CPO and note that it is not fully tuned.

Lyapunov-based methods (6). These methods are based on Lyapunov functions which are used
to certify stability in dynamical systems. The method uses Lyapunov functions L of the form
Jπ[L](x) ≤ L(x). The Safe DQN algorithm works as follows. Having a safe policy πk as a
neural network, we estimate QR (reward Q-value), QC (cost Q-value) and QT (discounted stopping
time Q-value) as neural networks via Bellman updates. Next, we construct a Lyapunov function

1∆X means a set of all probability distributions over X
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Q-value via QL = QC + εQT (correctness proven in the main paper) with ε = Cmax − πTk QD
πTk QT

.

At each step, we solve a linear program πTQR → max s.t. (π − πk)TQL ≤ ε for π. In case if
it is infeasible, we only learn QR, QC , QT using Bellman steps. After we make a supervised step
DJSD(π|πk) → min2. Unfortunately, the authors do not provide the code with the paper and we
have used own implementation. The version of the method with approximate Q-values does not have
theoretical guarantees. A drawback of this method is that after each rollout, need to call a TensorFlow
computation twice: once to get QR, QL and then to do the supervised JSD step, since TF cannot
solve the LP. To solve the LP, we use the pulp solver as the problem is sparse. The paper does not
describe in what sequence these quantities need to be trained. The issue is that to train a good π, we
need a good Q and vice versa. In our implementation, we first train Qs with greedy action-selection
and then switch on π training. However, it simply unlearns everything after enabling safety.

Common elements. We see that in order to solve Constrained MDPs, at each training step, a
constrained optimization problem is solved. That problem approximates the original one with 1st
or 2nd order Taylor approximation. It has three components: reward maximization, first-order hard
constraint for cost, and closeness to original policy πk.

Other methods. A trivial approach to solve CMDPs would be to consider a modified reward
R′ = R − λC with a learnable Lagrange multiplier λ. The problem with this method is that it
becomes unstable (7).

We now have an understanding of how algorithms for Safe RL work and we will present our own.

3.2 Proposal: Projected PPO

In this section, we present PPPO, a novel algorithm for CMDPs.

The algorithms described in the previous section are quite complex. In this project, we try to propose
a simpler algorithm. Specifically, we want to replace the inner constrained optimization problem
(linear or quadratic) with projection. In order to ensure closeness to the current policy, we will use the
PPO-clip objective (8) instead of constraints like in CPO. PPO shows promising results, therefore it
makes sense to make it safe. Up to our knowledge, there is no safe easy-to-implement PPO algorithm.

Since PPO update enforces closeness, the return can be approximated using first-order Taylor
expansion. Therefore constraint becomes linear: Jπ[C] + (θ − θ′)T gC ≤ Cmax. In order to satisfy
it, after each policy improvement using the PPO-clip objective, the resulting θ is projected to that
half-plane. See Algorithm 1 for details. The advantage of this method is that it is easier to implement
than CPO or Lyapunov, because it does not have an inner optimization problem.

Now we have defined the baselines and the proposed algorithm and we compare them in simple
environments.

4 Experimental evaluation

In this section, we compare CPO, Lyapunov method sDQN, PPPO and a random agent on simple
environments.

We use Cartpole-v0. We considering the problem solved if constraint was violated < 1% of the
training time and a reward of at least 175 was achieved (maximum is 200). Agents are compared
by the mean over repetitions, and the max over the training phase, reward for which the cost was
satisfactory < 100 = Cmax. We use γ = 1. The Lyapunov method did not converge, see the
description above.

For the CPO policy function we use a network with 10 hidden nodes and a sigmoid activation function
with truncated normal initialization for both biases and weights. For the PPPO policy network we
use a common layer of 10 nodes. Next, policy and value heads have other separate 10-node layers.
Weights are initialized using the LeCun normal distribution and biases are set to 0. Activation is a
sigmoid.

We tune hyperparameters in the following way. We fix the number of episodes to collect before
training to 5. We repeat each experiment 5 times with different initializations and random seeds.

2Jensen-Shannon Divergence: DJSD(p, q) = 1
2
(DKL(p||r) + DKL(q||r)) for r = 1

2
(p + q)
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Input: Initial policy and value parameters πθ, Vϕ;
Result: Safe Policy π obtained via safe learning
while not achieved the desired reward do

Collect a set of trajectories by running πθk in E ;
Compute rewards-to-go R̂t;
Compute advantage estimates Ât based on Vϕ;
Compute the cost return Jπ[C] and the constraint gradient gC ;
if The current policy is safe: Jπ[C] ≤ Cmax then

Update the policy by optimizing PPO-clip using Adam:;

θk+1 = arg max
θ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

min

(
πθ(at|st)
πθk(at|st)

Aπθk (st, at), g(ε,Aπθk (st, at))

)
Here g(ε,A) = (1 + ε)A if A ≥ 0 or (1− ε)A if A < 0;

Project θk+1 to a half-plane (θk+1 − θk)T gC + Jπ[C] ≤ Cmax;
else

Do a policy gradient step to minimize the cost:;

θk+1 = θk − ηgC
end
Fit the value function via Adam:

ϕk+1 = arg min
ϕ

1

|Dk|T
∑
t∈Dk

T∑
t=0

(Vϕ(st)− R̂t)2

end
Return πθ
Algorithm 1: Projected Proximal Policy Optimization. Red shows differences between PPPO and
PPO.

For CPO, we change the step size δ ∈ {0.1, 0.5, 0.05, 0.01, 0.005, 0.001} and the best option is
δ∗ = 0.05 by the metric above. For PPPO, we set ε = 0.1 as recommended by (8). We use Adam for
the PPO-clip objective with learning rates in γp = {0.1, 0.001} and for the value function we use
Gradient Descent with the same set of learning rates γv . For the fallback option we also use Gradient
Descent with the same set of learning rates γs. We search for the optimal number of optimization
steps k ∈ {1, 5, 10, 20}. The best options are: γp = 0.001, γv = 0.1, γs = 0.001 and k = 5.

The results for the working agents (CPO, PPPO, random) are shown in Figure 3. It shows that CPO
has faster convergence than PPPO but it violates constraints more frequently. The performance is
similar. Both agents are better than the random agent.
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Figure 3: Agents: CPO, PPPO, Random on Cartpole-v0, best hyperparameters. 5 repetitions of a
single experiment are shown on the same plot.

We compare agents on a simple environment and see that PPPO is better than CPO in terms of
constraint satisfaction. However we note that our implementation of CPO is not well-tuned. To make
the comparison more fair, it would make sense to use authors’ implementation instead of our own.

5



5 Conclusion

We consider safe continuous-state reinforcement learning in the context of CMDPs. We first propose
to standartize existing benchmarks as they vary from paper to paper. We implement existing safe
RL algorithms such as CPO and sDQN. We propose our own algorithm, PPPO, which is simpler to
implement. We compare the agents on a simple environment. We show that our implementation of
PPPO shows a better balance between constraint satisfaction and reward. We note however that to
make the comparison fair, CPO should be tuned in a much more thorough way.

One possible future direction is to finalize the set of proposed safe RL benchmarks by adding the
environments from (7; 6) to it. In addition, a theoretical guarantee for PPPO convergence would
make it a more reliable solution. Another extension is considering more complex environments for
the comparison. In addition, it would make sense to finish the Lyapunov agent and release it as
open-source code as the original paper does not provide it.
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A Project proposal

Table A shows a planned timeline with an attempt to meet the NeurIPS submission deadline, which is
May 23rd 2019. The planned activities can be approximately divided into three phases:

1. Phase 1: Familiarizing with several methods that seem fruitful for generating a novel idea.
This phase would ideally take time until the end of March, but would take as long as an
idea for moving into Phase 2 has not appeared. Currently planned flow of Phase 1 is
divided into two parallel branches. The first involves implementation of the methods of (7)
and (6), which were selected during preliminary considerations as potentially fruitful for
development of a novel safe-RL concept. The second branch involves implementation of
(12), which is a method based on Bayesian Optimization, and familiarization with (13) and
related computational methods (14) which may be of use for safety aspect in Phase 2.

2. Phase 2: Development of the idea obtained from Phase 1. In case that a proper idea appears,
it would be further developed in this phase from conceptual and theoretical point of view.

3. Phase 3: Experimental testing in simulation or on a physical system. The testings would
first be first done numerically by simulation. There is also a certain probability of getting
an opportunity to test the developed method on an inverted pendulum (which is therefore
considered as a targeted system in Phase 1) or on a hovercraft.

Week Sergei Ivan Summary
19 March
26 March Reading on safe RL
5 March Reading on safe RL
12 March Policy gradients for CartPole Implementing simple methods for

simple environments without safety.
Project description.

19 March Implementing paper (7) Implementing paper (12) Implementing safe RL methods
26 March Implementing paper (7) Reachability analysis (13),

level set toolbox (14)
Implementing safe RL methods

2 April Implementing paper (7) Formulating safe continuous RL
benchmark

9 April Implementing paper (6) Formulating safe continuous RL
benchmark

16 April Implementing paper (6) Evaluating all methods on bench-
mark

23 April Implementing paper (6) Coming up with an extension
method

30 April Evaluating the extension method
7 May Reserved for unforeseen changes

14 May Writing and proofreading
21 May Writing and proofreading
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B Interim results I (April 26th)

We have defined safety for the Cartpole-v0 environment as having x ≥ 0 and ϕ ≥ 0. We have
trained Constrained Policy Optimization (7) with vanilla policy gradient (using Gt as a critic) and
no backtracking line search. Figure 5 shows that the method works, meaning that it was possible to
obtain low cost with high reward.

We are using k = 20 episodes to estimate policy gradient and use matrix conditioner of 0.01, discount
factor γ = 0.99, network with sigmoid activations for hidden layers and linear output layer with
configuration [4, 5, 2] and CPO step δ = 0.01 for n = 30 steps of optimization

The main problem was that implementing (7) took 3 weeks instead of planned 1, the difficulties
were caused by many things. First, it required learning pycvx. Moreover, originally method did
not average gradients over episodes resulting in a noisy estimate. Moreover, there were issues with
implementing vanilla (non-safe) policy gradients.

We are looking at available CPO source code to replace our implementation for a fair comparison,
however, it is written for RLLab which requires an older version of Ubuntu to work with.

Currently we have implemented Advantage Actor-Critic method and Proximal Policy Optimization
(Figure 4) as step for implementing (6) since it is based on these algorithms. An unpredicted challenge
was that implementing the algorithms also takes time.

Our code is available at

https://github.com/sergeivolodin/SafeContinuousStateRL

In order to implement (6) (no code is provided with the original paper) we intend to take an existing
implementation of PPO and then make it safe as the existing implementation would already possess
the necessary additional features such as parallelism and efficient implementation. It does not make
sense to make our own implementation that powerful because the goal of familiarizing ourselves with
PG, PPO, A2C was achieved.

Plan corrections. We are significantly behind the schedule and currently we plan to remove the
Phase 3 (deployment on a physical system). Moreover, Ivan had a thesis deadline and couldn’t do
his part before May. We still plan to compare methods on the simulated tasks and still plan to try to
come up with a theoretical extension to them.

C Interim report 2

Paper (15) is actually for continuous-action spaces. The right paper is (6) and also (16; 17) for entropy
and reward-constrained.

Plan: take SDQN code from (6) and implement it, first implementing DQN (should be easy...).
Estimated time: 3 hours.

0 200 400 600 800 1000 1200 1400
Episode

0

25

50

75

100

125

150

175

200

Re
wa

rd

PPO (unsafe) on CartPole

0 250 500 750 1000 1250 1500 1750 2000
Episode

25

50

75

100

125

150

175

200

Re
wa

rd

A2C (unsafe) on CartPole

Figure 4: PPO and A2C (our implementation, both unsafe) for CartPole
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Figure 5: CPO (our implementation, safe) with d = 20 (left) and d = 200 (right)
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