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Abstract

The problem of learning good abstract representations from high-dimensional states is arguably
one of the foundational tasks in of Artificial Intelligence. One of the theoretical and philosophical
approaches to learn abstract representations is the Consciousness Prior proposed by Yoshua
Bengio. One of the key components in that proposal is the sparsity of the transition model,
which hypothetically leads to good learned abstractions. In our project, we propose a practical
framework for learning abstractions in Reinforcement Learning via sparsity of the transition
model. To test it, we design a simple environment where abstractions can be learned. The results
show that we are able to recover the correct representation. We provide theoretical formulation
of the problem and the explanation of the results. We provide exciting future research directions
and concrete questions in the domain of learning good abstractions.
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0.1 Introduction

In this project, we focus on the problem of learning abstract representations from high-
dimensional data. This can be seen as the ability to find long-term patterns in data that compress
it the most. For example, after seeing a ball many times we give it a name "ball" and then try to
re-use the same word for other similarly looking objects [1]. This way, we compress the high-
dimensional visual data and replace it with only the relevant information. We take a practical
approach to learning abstractions by constraining the model to be sparse. Specifically, when
learning transition dynamics of a reinforcement learning environment, the transition function
is required to have low description length. This forces the learned representation to be "com-
pressable" in a sense that it is computationally easy to transition from a state to the successive
state.

This work is based on a theoretical proposal by Yoshuo Bengio (the Consciousness Prior)
[1]. Specifically, the idea to obtain good learned representations by regularizing the model with
sparsity is taken from that paper. We make that theoretical proposal concrete by considering
Reinforcement Learning dynamics where previous states and actions determine future states [3].
We collect data from this dynamical system of an agent and an environment, and fit a causal
model to the empirical transition dynamics. We additionally add a decoder component which
computes internally-used features from raw observations. The model is fitted on the features.
The model is regularized for sparsity, and that should lead to good representation.

We propose a simple toy environment. It has linear transition function and the transition
matrix is sparse. Then, states are artificially made less sparse by applying a general linear trans-
formation. Because of it, the observations that the agent receives are not sparse, but can be made
so by finding the right linear transformation. We show that even in that simple case, the problem
of learning these "concepts" is NP-hard (by reduction from Sparse Dictionary Learning).

To solve this problem of learning abstraction in linear case we propose an heuristic algorithm.
It first estimates the transition dynamics for the observations. Then, the resulting function is
simplified by decomposing into a basis transformation ("decoder") and a sparse transition
model.

The agent receives feedback from the model as well via the Curiosity reward [2]: if the decoder
matrix becomes degenerate (some information is lost), the model becomes overfit and has high
test loss (where the agent generates "test" distribution by optimizing for off-distribution data).

The obtained environment model’s sparsity fits well within the causality framework (Judea
Pearl). For example, if the model is linear, then the number of non-zero components in the
model corresponds directly to the number of edges in the causal graph. Training the agent with
a curiosity reward can be seen as performing causal interventions in the environment, in a sense
that the policy tries to change the values of causal nodes to explore.

Contribution. We propose a toy environment with linear dynamics to learn ab-
stract representations on. We show that even for this simple environment, the prob-
lem is NP-hard. We design an algorithm to solve this problem approximately, and
test it in experiments. The results show that dimensionality of the problem helps
learning better abstractions. Code can be found at https://github.com/sergeivolodin/
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Figure 1: Proposed agent architecture. The environment consists of a Game Engine (for example,
the old code running Atari games) which implements the game logic, and the Encoder – a
function mapping latent states of the game engine to observations. The model-free agent samples
down the observations (for example, via a CNN), and then trains a policy. The Sparse Model
Learner decodes observations as well, and then fits a model to environment transition dynamics,
with an additional regularization for model sparsity. The loss of the learned model on novel data
is given to the agent as a reward to encourage exploration.

causality-disentanglement-rl. The slides can be found at https://docs.google.com/
presentation/d/1iYfbMrMZUn88cet36qe0h-2oHG9HpbFfEZHTVp4xlik/edit?usp=sharing

0.2 Problem setup

We use the standard RL notation with an environment µ and agent with a policy π. They interact
and provide histories of observations, actions and rewards (o1, a1, r1), ..., (oT , aT , rT ). The envi-
ronment internally has some state st dynamics, which is then converted to observations given as
an output of the environment. The agent receives pre-processed states from the environment,
and the reward is pre-processed as well. Specifically, we add the Curiosity reward (the agent is
rewarded for "disproving" its model of the environment).

We assume that the environment has some latent low-dimensional structure which corre-
sponds to states st. Observations can be computed from the states: ot = E(st) where E is an
encoder function. The agent pre-processes observations with a decoder function D and obtains
features ft = D(ot). In this setup, both encoder’s and the decoder’s output depends only on the
current state/observation, but this restriction can be lifted. In this paper, we only focus on the
simple case.

The agent fits a transition model f̂t+1 = M(ft, at)
1. Note that we only consider 1-step de-

1We do not predict the reward explicitly for clarity of notation, as it can be added as as part of observation.
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Figure 2: Explanation of the framework. In a typical RL environment, the (hidden from the agent)
low-dimensional game engine code generates high-dimensional observations. Then, the policy
learns to perform well in that environment. Our method tries to find a representation giving a
sparse transition model, hopefully recovering the original simple dynamics again. This data can
be used to further analyze the environment and interpret the behavior of the agent.

pendencies in our model (Markov assumption), but our framework is easily extendable to more
time-steps. The model is regularized for sparsity with some function S(M) (for example, l1-
norm). To fit the model, we design a fit loss Lf . The decoder D can become degenerate (for
example, always output 0), and to avoid that, we introduce the non-degeneracy loss Ld. The
curiosity reward is then equal to Lf – a metric that shows how well novel data fits the current
model.

0.3 Solution and theory

To make a concrete advance on the problem of learning abstractions, we consider a linear case.
Specifically, the environment’s latent state evolves as st+1 = Asst + Aaat, where s ∈ Rs2, As is
a matrix of size s × s, and Aa : s × a (s rows and a columns). t is the time index t ∈ {0, 1, 2, ...}.
Actions at are encoded as one-hot vectors.

In the same vein, the encoder function E is also linear, and ot = Est where the right-hand
side is a matrix E of size o× s, ot ∈ Ro is a vector, and Est is a matrix-vector product.

The agent consists of a policy π mapping observations and history oht into probability
distributions over actions at ∼ π(oht); a decoder D, a matrix of size f × o where f is the feature
dimensionality; and a model M = [Mf ,Ma], two matrices of size Mf : f × f and Ma × f × a. If a
decoder is applied to an observation, the result is in the feature space: ft = Dot where ft ∈ Rf .
The policy consists of two parts: π(ot) = π′(ft) = π′(Dat). Thus, it only relies on the features (the
learned representation) and not on the observations. The model is learned from the obtained
history H = (o1, a1, r1), ..., (oT , aT , rT ) stored in a replay buffer: Mt+1 =M(Ht). The policy π is
trained using any reinforcement learning algorithm from histories: πt+1 = Π(Ht).

When the environment gives a reward rt, the agent’s perceived reward is rt + Lf where the
model fit lossLf is computed on the current time-step ot−1, at−1, ot. The summary of the training
procedure is shown below.

2We abuse the notation and write s a) as index for matrices b) as the state vector c) as the state dimensionality.
Same for actions, observations and features.
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One step of the training algorithm is described below.

1. Model M , decoder D and the policy π are initialized randomly

2. We repeat the following steps until convergence

3. Agent is run for an episode and the data Ht is collected.

4. Agent is trained using the obtained data (in a standard way), assuming the decoder D is
differentiable

5. Loss Lf + S(M) is minimized to update our model, which updates M and D

0.3.1 Environment design

To reduce the amount of work for a proof-of-concept experiment, we make it as simple as
possible, while preserving the qualitative properties of the problem (high-dimensional non-
sparse representation with some underlying low-dimensional sparse dynamics that we want to
uncover). We design a simple environment with these properties.

We define the Vector Increment environment with a state s ∈ Rs. The actions are a ∈
{1, ..., s}which we sometimes write in terms of a one-hot representation of dimension s. Given
an action vector at and being in state st, the environment computes st+1 = st+at. So, for example,
action a = 3 would increment the third component of s. The matrices As and Aa are identity
matrices of size s× s (four our environment, a ≡ s). Identity matrices are the most sparse (they
have only s non-zero components out of s2) among non-degenerate matrices of size s× s.

The reward of the environment encourages the agent to stay on the "diagonal": rt =
maxi{sit}−s

at
t

maxi{sit}−minj{sjt}
. The optimal strategy is thus to always choose the smallest component:

a∗t = arg mini s
i
t. This results in the desired behavior – the vector stays close to the "diagonal"

s1t = s2t = ... = sst . This reward is chosen so that the agent explores all possible actions.
Observation is computed by applying the encoder E to the states: ot = Est. The encoder E is

initialized randomly and is fixed throughout the usage of the environment.
For this environment we have a clear expectation of what we want from the agent. We expect

it to learnD = E−1 and then it uncovers matricesMf ,Ma with sparsity of S(As) and S(Aa). Since
M has to be non-degenerate as well, and A had best sparsity, M has best sparsity as well. Note
that the problem is invariant under feature order permutations, thus, the solution is not unique,
and it is not neccery that M = A.

Note that for this problem we don’t expect that current methods would learn the disentangled
latent dynamics because it depends crucially on the sparsity of the model rather than on its
prediction quality.

0.3.2 Losses design and analysis

Now we define concretely what Lf , Ld and S are. We develop several method to fit the data.
Losses defined from data:

7



1. Lf = ‖Dot+1 −MDot‖, Ld = ‖RDot − ot‖ for a reconstructor matrix R : o× f . Both losses
are convex if we consider the variables D,M,R separately. It is not convex if we consider
all of them together because of the product MD.

2. Lf = ‖ot+1 −RMDot‖, Ld = ‖RDot − ot‖

3. Lf = ‖Dot+1 −MDot‖, Ld = ‖D†‖

For each of these cases, we can either use two optimizers for Lf and Ld, or run an optimizer
on a linear combination of these losses: L = λfLf + λdLf → min. The optimization procedure
will often find saddle points and local minima. A good metric to diagnose the training procedure
is to look at the cosine between gradients of two losses. If cos](∇DLf ,∇DLd) = −1, then the
training procedure will likely to stagnate: losses "pull" the decoder D in different directions.

Losses defined from the observation model W . We can split the problem of learning M into
two stages. First, we fit a model of observation dynamicsW , for our case it would be ôt+1 = Woot+

Waat for matricesWo× o× o andWa : o×a. We do so by minimizing the loss Lo|t = ‖ôt+1− ot+1‖.
Next, given matrices Wo and Wa, we estimate the best decoder D and the model Mf , Ma such
that the model is most sparse.

Sparsity losses:

1. S(M) = ‖Mf‖0 + ‖Ma‖0. The issue with this loss is that it is non-differentiable

2. S(M) = λ · (‖Mf‖1 + ‖Ma‖1) with S(M) added to the loss. We need to choose the λ

parameter

3. Same loss, but with projection onto an l1-ball instead of λ. Here we need to set the ball
radius explicitly

4. S(M) = ‖mT ‖1 where m is the matrices Mf ,Ma flattened into a vector, and m = [mH ,mT ]

– head and the tail of that vector. Here we explicitly set the number of components we want
to preserve

The l1 penalty can be implemented either as a regularizer or as a projection step. The problem
with the first option is that the parameter’s effect depends on the magnitude of the loss. Since
we have a decoder with non-fixed norm of columns, the magnitude of the loss is different for
different random seeds. A problem with projection is that the ball size can be different as well.
Another way is to use lp norm for p ∈ (0, 1). Yet another way is to use hard sparsity where weights
are zeroed externally.

A more principled approach would be to automatically select the regularization parameter
based on the loss. If the loss is low, we can increase regularization, since we already found a way
to fit the data. However, if the loss is high for a long time, regularization is likely affecting the
model too much and not allowing it to converge. This iterative self-regulating system would
result in a process similar to simulated annealing. Specifically, the temperature parameter here
is the regularization parameter. If it is low, then the temperature is high, and the model can
consider many alternatives. If regularization becomes stronger, the system converges to a local
minimum with more crisp abstractions. The main problem here is that the model might choose
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the wrong "valley" to go into. The idea of our approach is to detect that automatically via tracking
the magnitude of the loss over time. If it does not improve, it makes sense to relax constraints,
since it is likely that we are in the wrong "valley".

We use tf-agents to implement this and we use the following components in the following
way:

1. The keras model M , the decoder D and the policy π are initialized randomly. The agent’s
reward is r′t = rt + Lf |t. The policy π(ot) = π′(Dot) only depends on the features.

2. The standard tf-agents driver runs episode loops with agent’s policy π, environment µ and
reward r′t for Nagent episodes, giving histories Ht. The agent’s performance loss on its own
replay data is minimized with D trainable: πt+1 = Π(Ht)

3. Another tf-agents driver runs the causality training loop for Ncausality batches from the
replay buffer: the errorLf+S(M) is minimized on replay dataHt, and the model is updated:
(Dt+1,Mt+1) = DM(Ht). The agent is not invoked here, and actions are taken from the
buffer. D is trainable here as well.

4. Agent’s replay buffer is cleaned (since reward r′t has changed due to update in M ). At later
stages when Lf ≈ 0, we can skip this step, as the environment dynamics stabilizes.

5. Repeat the loop from item 3.

0.3.3 Training dynamics

In all our setups, we have a complicated dynamics that is not decomposable into just RL or just
supervised learning due to the interactions between components: policy affects observations,
which affect the model, which affects the reward, which affects the policy. This is how the agent
and the model have a closed feedback loop. In addition, the decoderD is trainable both from the
agent and from the model losses. The problem can be decomposed into two convex (in the linear
case) supervised learning problems. For example, the option Lf + S(M) = ‖Dot+1 −MDot‖+

S(M), Ld = ‖RDot − ot‖ consists of just two supervised learning problems.
Let’s consider two losses Lf and Ld which both affect the decoder. Like in GANs, one of

the losses is responsible for the quality of the model (like the generator loss), and the other
one is responsible for keeping the decoder within the correct range of parameters (like the
discriminator loss). While both losses separately Lf + S(M) and Ld are convex (for our linear
case) in the spaces of M and D separately, they are not convex together. Specifically, the matrix
product MD makes the Lf loss non-convex.

An analogy for this game would be a teacher explaining to a student (decoder) what to do.
The student does most of the work independently (loss Lf ), but she needs to be guided to avoid
bad local minima and other degenerate solutions (loss Ld). Naturally, there should be a balance
between Lf and Ld. For example, if Ld is too "strong" (either because it is optimized using a
more powerful optimizer, or because it has a large coefficient in the linear combination for the
total loss), then the model will quickly converge to a non-degenerate solution (Ld is low), but it
will not fit the data (Lf is high) – the model is too constrained to stay at the point which is the
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furthest from being degenerate (an analogy would be a teacher who is overly dogmatic and the
student who cannot do any independent exploration because of that). On the other hand, if Lf
is too strong, the model will likely converge to low Lf but high Ld. This corresponds to the case
where the teacher ignores mistakes in the student’s work, and the student thinks everything is
going fine.

Therefore, the success of finding a good minimum depends on the balance between Ld and
Lf .

0.3.4 Analysis of the linear case

Our overall goal now is to find the most sparse matrix Ms, Ma and a decoder D such that the
model fits the observations dynamics transformed by the decoder.

First, let’s understand what the optimal observation modelW should be. By rewriting ot = Est,
we get Lo|t = ‖WoEst + Waat − Est+1‖. Now, we know from the environment dynamics that
st+1 = Asst + Aaat. Therefore, Lo|t = ‖WoEst + Waat − EAsst − EAaat‖ = ‖(WoE − EAs)st +

(Wa − EAa)at‖. Under reasonable non-degeneracy assumption (see section 0.3.4) we get that
WoE = EAs and Wa = EAa. Under more non-degeneracy conditions, we get Wo = EAsE

†.
Next, let’s consider the model M that the agent needs to learn. If the model has converged

to zero loss (which is possible under non-degeneracy conditions), then Lf = 0, and, therefore,
Dot+1 = MDot. Using the equality ot+1 = Woot+Waat, we get thatDWo = MsD andDWa = Ma.
Under more non-degeneracy assumptions, this means Ms = DWoD

† and Ma = DWa.
Now, if we combine the two equations together, we get: DEAs = MsDE and DEAa = Ma

which gives Ms = DEAs(DE)−1. If we re-parameterize with Z = DE, Ma = ZAa and Ms =

ZAsZ
−1. Now, the objective is to minimize S(M) = S(ZAa) + S(ZAsZ

−1). Note that here the
only free variable is the decoder D. Given a non-degenerate decoder, the model is computed
from it by the equations given here.

All of the formulations of the problem in the previous section are equivalent mathematically –
solution for one of the formulations can be transformed into a solution for another one. However,
computationally they are vastly different in our experiments.

Let’s consider the computational class of the problem that we have defined. If Ws = 0 (the
environment has no memory, actions just determine the next stage. This is the case of multi-
armed bandits), the problem becomes S(M) = S(DWa) → min s.t. D is non-degenerate. The
problem can be interpreted in the following way. Given a set of vectors [W 1

a , ...,W
a
a ] = Wa

(each of the vectors is a column of Wa, we need to find a basis transformation D such that
the resulting vectors are most sparse. This is exactly the formulation of the Sparse Dictionary
Learning problem. This problem is known to be NP-hard. Now, our problem is even more
complex in case if Wo 6= 0. In this case, apart from making vectors of Wa sparse under basis
transformationD, we also want to make the matrixWo sparse, which is transformed withDWoD

†.
Thus, Sparse Dictionary Learning is a special case of our linear abstraction learning problem.
Thus, our problem is NP-hard as well.

Note that in the other extreme case if Aa = 0 (actions do not influence the state in any way),
the problem becomes very simple. We need to find a sparse basis for a matrixWo using a decoder
D: Ms = DWoD

†. Consider the rank of rkWo = r. Now, Ms cannot have less than r non-zero
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components, or otherwise it would have rank less than r, and some information will be lost. And
to achieve only r non-zero components in Ms, we simply can diagonalize the matrix Wo using
any standard algorithm. Therefore, the case of Aa = 0 is solvable in polynomial time.

Non-degeneracy conditions in the linear case

If we solve for Lf = 0, we get (DEAs −MfDE)st = 0 and (DEAa −Ma)at = 0 for all visited
states st and taken actions at. Consider the equation (DEAs −MfDE)st = 0. Denote Qs =

DEAs −MfDE, matrix of size f × s. If there are states s1, ..., st such that S = [s1, ..., ss] has
rank s, we have QsS = 0 leading to Qs = 0 (since we can multiply both sides by S†). We call
this case "states are non-degenrate". The same logic applies for actions. If both actions and
states are non-degenerate, then Qs = 0 and Qa = 0. If they are not, Qs = 0 and Qa = 0 is also a
sufficient condition for Lf = 0, but not a necessary one. Let us consider the case of degenerate
states. It would mean that some of the state components is always a linear combination of other
components. In that case, we can safely remove that component. This would only increase the
sparsity of the transition dynamics S(A).

From this point on, we assume that states and actions are non-degenerate. Then, it leads
to Qs = 0 and Qa = 0. This means that DEAs = MfDE and DEAa = Ma. Denote Z = DE, an
f × s matrix.

Now, if o < s, it means that some information is lost when encoding the states, and the
environment is partially-observable. In our current framework it is impossible to reconstruct the
correct dynamics, as our model only considera 1-step dynamics. Therefore, we assume o ≥ s.

If o > s, it means that some of the components are not required for the reconstruction, and
some of them can be simply eliminated. Thus, we can safely assume o = s.

Now consider the feature dimensionality f . If f < o, we cannot make Lf = Ld = 0 because
otherwise it would have been possible to find o > f linearly independent vectors in an f-
dimensional vector space, which is impossible. If f > o, the optimal solution would zero the
extra components out, since it would lead to most sparsity. Overall, we can assume f = owithout
loss of generality.

While theoretically we can assume f = o = s, in real world settings, we have s < o > f with
s = f . States and features are low-dimensional (for example, state of a card game), while the
observations are high-dimensional (for example, images from a camera looking at the cards
and other players). In this case, the relationship between the states and observations is highly
non-linear: there is no simple function to translate the game state into the image that the camera
would see. Even if that function was linear, we do not know apriori which features in the model
can be discarded. Thus, the case s < o > f and s = f is practically interesting and we will
consider this case.

We thus have two non-degeneracy conditions. First, the observations must be such that the
states can be reconstructed from them. This means that o ≥ s and E is a full-rank matrix. The
same goes for the features: we should be able to reconstruct the observations from features,
which means that f ≥ s and D has a rank of s. In case of f = s, D must be full-rank.

Define Z = DE : f × s and consider matrix ZTZ of size s× s. Since D and E were full-rank,
the square matrixZTZ is non-degenerate, and there exist a left pseudo-inverseZ† = (ZTZ)−1ZT .
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Therefore, we obtain As = Z†MfZ.
To express Mf via As, we assume that f = s. If so, ZZT is a square non-degenerate matrix as

well, and Mf = ZAsZ
T (ZZT )−1 = ZAsZ

† , where Z† = ZT (ZZT )−1, the right pseudo-inverse.
This is an explicit formula determining the model given the decoder. Now, for actions, we have
Ma = DEAa. So, if the decoder is fixed, the problem reduces to fitting a linear model to data in
the realizable non-degenerate case, which leads to a unique solution for Mf and Ma.

Therefore, in the non-degenerate case (full-rank states, actions, As, Aa, E), the problem can
be re-formulated as: S(ZAsZ

−1)+S(ZAa)→ minD s.t.D has full rank. Note that in case ifAs = 0,
this is precisely the formulation of Sparse Dictionary Learning. Thus, the problem is NP-hard,
and we do not expect to find a good explicit solution (only heuristics).

Mathematical interpretation of our problem is to find a basis of size f , Z : f × s for a matrix
As : s× s and a set of vectors (A1

a, ..., A
s
a) = Aa : s× a such that they are most sparse together.

The total loss cannot be made convex under any re-parametrization. Indeed, if we permute
rows of decoder in an optimial solution, the resulting solution has the same value, but the points
in the middle are not (they are not sparse).

Now, in our case if As = I is an indentity matrix, we always have Wo = I and Mf = I, since
in any basis an identity transformation looks the same. This is the only non-degenerate matrix
that is invariant under basis transformations – all other cases (even just diagonal As) will look
different after a suitable basis transformation.

The decoder matrix D has fo components and 1 constraint for non-degeneracy. This leaves
fo − 1 free components. By fixing the magnitude of rows of D, we gain another f constraints,
and by fixing their order, we get f − 1 constrains. Thus, in total we have fo− 2f free components.

Consider the loss Lf |t = ‖Dot+1−MfDot−Maat‖ and consider a still point∇Lf = 0. It gives
the following tensor equation:

(Mf )αα − (D−1MfD)ββ = (DE)αγ
∂D−1γδ
∂Dαβ

(E−1As)δβ

On the right-hand side we use the Einstein tensor notation in a sense that we sum over γ and δ.
In total, this equation determines fo equations, as α ∈ [f ] and β ∈ [o]. The equation is over

Mf and D, which meanss that in total we have f2 + fo unknowns. So, we have f2 + fo− fo = f2

free variables. As previously noted, we have 2f constraints on D coming from fixing the scale
and order of rows. Thus, now we have f2 − 2f free parameters. In case if f = 2, the set of fixed
points is discrete. However, if f > 3, it is possible to have connected manifolds of fixed points.

0.4 Experiments

We test experimentally various components of the setup, and then test the whole setup together.
We consider several loss designs:

1. (as two problems) Estimate ôt+1 = Woot + Waat, then solve ‖DWoD
†‖1 + ‖DWa‖1 +

λ‖D†‖2 → min
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2. (as one problem). Here, we set Lf = ‖Dot+1 −MfDot −Maat‖ or Lf = ‖ot+1 −RMfDot −
RMaat‖; and Ld = ‖RDot − ot‖ or Ld = ‖D†‖. Finally, we use S(M) = ‖M‖1 or SparseSep,
or the thresholding sparsity regularization from Keras.

Setups. First, we try to learn a sparse model on synthetic data (generated without the agent).
Next, we plug the sparse model learner component together with RL and measure the results.

Synthetic data. The preliminary results on synthetic data show that only one prob-
lem formulation works – the one with two problems decoupled from each other. See
l1-sparsity-playground-encoder-decoder.ipynb.

All components together. We use VectorIncrement environment with a time limit of 20

and we use REINFORCE with default parameters as an agent. We consider dimensionality
s = o = f and s = 2, 3, 5, 10. We set p = 1, curiosity reward coefficient α = 1. The coefficient for
regularization when combining Lf and Ld ε = 1. We limit the dataset size to 5000 and re-sample
from the dataset to remove old points. The sparse model learner is run every 10 iterations of
agent training. We collect 20 episodes at each agent training iteration.

The metrics are:

• train_return. Reward from the environment with an added curiosity reward, obtained by
agent when training

• eval_return. Reward from the environment when evaluating the agent

• train_loss. The loss from the REINFORCE trainer.

• cos. The cosine between gradients of Lf and Ld.

• nnz. Number of non-zero components in the model. This is the main metric of success,
when combined with zero Lf and Ld losses.

• fit_loss. The fit Lf loss

• rec_loss. The reconstruction non-degeneracy loss Ld.

The success ratios for different dimensions are shown in Figure 3. It can be seen that the
success rates are reasonable for dimensions of 3 and 5, but are zero for dimensions of 2 and
10. We explain it by the fact that for dimension of 2 the loss is too non-convex to converge to a
good representation (the learner is stuck in a local minimum), and for the dimension of 10 the l1
regularization becomes impractical: it selects many close-to-0 components instead of selecting
only few with a bit higher value due to the curse of dimensionality.

Figure 7 shows that the results depend crucially on the random seed of the encoder. Some
encoders give observations that are easier to disentangle compared to other random seeds. For
example, random seed 42 gives non-zero success rate for dimensions of 3, 5, but random seed 1

gives zero success ratio for both.
Environment models as graphs are shown in details for dimension of 5 in Figure 4. It can

be seen that the model fitted on raw observations is quite complex and not sparse: there is no
clear separation between zero and non-zero components in the histogram. On the contrary, or
method can recover the sparse graph.
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Figure 3: Success ratio for different dimensions. (left) as a line plot, (right) as a histogram

We visualize the descent curves under various versions of the losses. The result is shown
in Figure 5. It can be seen that for dimension of 5 it is (subjectively) easier to find the global
minimum than for dimension of 3. All the related metrics are shown in Figure 6. It can be seen
that the resulting model (heatmap with dark background) is indeed sparse. During training, the
cosine between gradients of two loss components does not reach extreme values (which would
lead to "stuck" training), in this case. The agent metrics (rightmost chart) shows that the agent
achieves near-optimal performance when using the decoder.

Overall, the experiments show feasibility of the proposed approach in a proof-of-concept
settings. Using out method, it is possible to learn abstract representation, in principle. However,
there are some engineering challenges that need to be overcome for this approach to be practical.

0.5 Conclusion

We presented a framework of learning abstract state representations in linear Reinforcement
Learning cases. Even under these simplifications, the problem is NP-hard. Our heuristic algo-
rithm is able to recover a sparse model of a linear environment.

0.5.1 Future directions

We would like to try the following options:

1. A closed-loop system tweaking the "temperature" based on the loss

2. SparseSep/Laplace prior for sparsity

3. Non-linear case

4. Harder environments, such as OpenSpiel. We extract causal models from them

5. Trying human studies: giving our extracted model to participants and seeing who performs
better
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Figure 4: Environment models as graphs for n = 5. (top left) the original model learned from
observations. Green are the feature vector components at the current iteration, red are the
actions, and feature values at the next iteration are shown in blue; (top right) the model learned
with our method on features; (bottom left) histogram of model weights for the observation
model; (bottom right) histogram of model weights for the features model.
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Figure 5: Loss landscape with descent curve for no-data objective for (left) n = 3, ε = 1, p = 0.8,
(right) n = 5, ε = 1, p = 1

0 100000

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
loss_l1

0 100000

0.0

0.2

0.4

0.6

0.8

1.0

grad_norm

0 100000

0.0

0.5

1.0

1.5

2.0

2.5

loss_dinv

0 100000

0

5

10

15

20

loss_total

0 100000

0.8

0.6

0.4

0.2

0.0

cos

0 100000

0

5

10

15

20

25

30
nnz

0 1 2 3 4

0
1

2
3

4
5

6
7

8
9

Weights heatmap

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0 500 1000
0

5

10

15

Average returns
Eval return (no curiosity)
Max return (no curiosity)
Train return (with curiosity)

0 500 1000
2

0

2

4

6

8 Training loss

Figure 6: Details of convergence, n = 5

16



0 200.0

0.2

0.4

0.6

0.8

1.0
sml.nnz

True
Estimated

5 100

10

20

30
sml.losses

loss_l1
loss_dinv
loss_total

0 10 200

2

4

6
agent.return

True
Train return
Eval return

10 15 200.0

0.5

1.0

1.5
sml.nnz

True
Estimated

2.5 5.0 7.50

20

40

60

80

sml.losses
loss_l1
loss_dinv
loss_total

0 100

2

4

6

agent.return
True
Train return
Eval return

5 100.0

0.5

1.0

1.5

2.0

2.5
sml.nnz

True
Estimated

2 40

20

40

60

80

100

sml.losses
loss_l1
loss_dinv
loss_total

5 10 150

2

4

6
agent.return

True
Train return
Eval return

7.5 10.00

1

2

3

4

sml.nnz
True
Estimated

2 40

20

40

60

sml.losses
loss_l1
loss_dinv
loss_total

5 10 150

2

4

6

agent.return
True
Train return
Eval return

Figure 7: Histograms for dimensions (top left) dimension n = 5, encoder seed se = 42; (top right)
n = 5, se = 1; (bottom left) n = 3, se = 42; (bottom right) n = 3, se = 1

6. Compare transfer learning and exploration capabilities of an agent regularized for sparse
model vs. an agent that is not

0.5.2 Related work

This project is connected to studies on disentangled representations and to Causal Reinforce-
ment Learning.
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