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Abstract

"I choose this restaurant because they have vegan sandwiches" could be a typical explanation
we would expect from a human. However, current Reinforcement Learning (RL) techniques
are not able to provide such explanations, when trained on raw pixels. RL for state-of-the-art
benchmark environments are based on neural networks, which lack interpretability, because
of the very factor that makes them so versatile – they have many parameters and intermediate
representations. Enforcing safety guarantees is important when deploying RL agents in the real
world, and guarantees require interpretability of the agent. Humans use short explanations that
capture only the essential parts and often contain few causes to explain an effect. In our thesis,
we address the problem of making RL agents understandable by humans. In addition to the
safety concerns, the quest to mimic human-like reasoning is of general scientific interest, as it
sheds light on the easy problem of consciousness.

The problem of providing interpretable and simple causal explanations of agent’s behavior is
connected to the problem of learning good state representations. If we lack such a representation,
any reasoning algorithm’s outputs would be useless for interpretability, since even the "referents"
of the "thoughts" of such a system would be obscure to us.

One way to define simplicity of causal explanations via the sparsity of the Causal Model that
describes the environment: the causal graph has the fewest edges connecting causes to their
effects. For example, a model for choosing the restaurant that only depends on the cause "vegan"
is simpler and more interpretable than a model that looks at each pixel of a photo of the menu of
a restaurant, and possibly relies as well on spurious correlations, such the style of the menu.

In this thesis, we propose a framework CauseOccam for model-based Reinforcement Learn-
ing where the model is regularized for simplicity in terms of sparsity of the causal graph it
corresponds to. The framework contains a learned mapping from observations to latent fea-
tures, and a model predicting latent features at the next time-steps given ones from the current
time-step. The latent features are regularized with the sparsity of the model, compared to a more
traditional regularization on the features themselves, or via a hand-crafted interpretability loss.
To achieve sparsity, we use discrete Bernoulli variables with gradient estimation, and to find
the best parameters, we use the primal-dual constrained formulation to achieve a target model
quality. The novelty of this work is in learning jointly a sparse causal graph and the represen-
tation taking pixels as the input on RL environments. We test this framework on benchmark
environments with non-trivial high-dimensional dynamics and show that it can uncover the
causal graph with the fewest edges in the latent space. We describe the implications of our work
to developing priors enforcing interpretability.
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Chapter 1

Introduction

Reinforcement learning is a general paradigm in Artificial Intelligence (AI) that considers two
entities: an environment and an agent which interact with each other over multiple time-steps.
The agent takes actions in the environment, and the environment gives the agent an observation
representing the state of the environment, and a reward. The goal of the agent is to execute
actions that lead to highest total reward during the interaction.

While RL environments in general can have arbitrary complexity, practically interesting
environments usually have a certain low-dimensional structure in them. For example, in the
popular CartPole environment, the observation (as image) has 720 000 variables (pixels), while
the dynamics of the cart can be explained using only 4 variables with a simple Newtonian update
rule. Atari games [16], having 100 800 variables in an observation, can be described using only
128 bytes (of the RAM state). The dynamics in the pixel space would be complex, with one pixel
at the next time-step potentially depending on all of the pixels on the previous one. However, the
dynamics in the latent space is much simpler. The real world has this property as well [53]: while
a camera can capture many megapixels per second observing a drone, the equations describing
the dynamics of the drone only have a few variables, and are much simpler.

RL agents could (and sometimes already do) solve real-world problems, such as steering the
wheel of an autonomous car, controlling a plant, or determining which content to recommend
to people on a social network. However, in many applications there exist highly undesirable
outcomes, such as the car crashing due to a mistake in controlling it, or a recommendation
engine showing polarizing or misleading content to people. To prevent such cases, we need to
have an understanding of what makes an agent take a certain action, why it "thinks" it is optimal,
and why it "thinks" it does not violate any sensitive constraints. Most capable agents are based
on neural networks (NNs), and, therefore, it is hard to interpret them. Both the large number of
parameters in the network, and many intermediate representations at each layer – the distinctive
features that allow NNs to be so versatile in fitting different kinds of data, lead to problems with
interpretability (or explainability) [84], because a priori there is no structure in the network: all
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variables depend on all variables of the input.

Even the state-of-the-art interpretability approaches [48] that look at individual neurons and
try to determine their functions (such as a neuron responding to the images of dogs) do not
allow to obtain a truly concise and reliable explanation, since, while some neurons are more
important than others in predicting a particular outcome, all neurons contribute a non-zero
amount to the outcome. Because of this, it becomes impossible to determine in advance what
the prediction of a network would be in all of the input scenarios.

In order to make an agent interpretable (be able to answer questions of the form "why
an action was taken given a particular observation"), the agent needs to grasp the high-level
concepts and objects contained in the environment. This is a Representation Learning (or
Abstraction Learning) task [14, 79, 31, 92, 108], with an objective of obtaining representations
allowing for good explanations. To begin with, regardless of the task the agent is solving, it has to
be able to explain in simple terms the effects of its actions on the environment.

While deep neural networks allow to fit various kinds of data and lack interpretability due
to the large number of parameters, in contrast, traditional ("good-old-fashioned" or GOFA)
Artificial Intelligence (AI) approaches are interpretable (explainable) and lack the versatility of
neural networks: they are not applicable to all the tasks. Such GOFA approaches are characterized
by discrete symbols that are the basis of a reasoning system, i.e. first-order logic. These symbols
correspond to real-world concepts and objects, such as the coordinates of a robot on the floor.
The drawback of such systems is that the mapping from real-world "messy" data (e.g. images
from a camera) to discrete symbols (e.g. the coordinates) is hand-designed and thus requires
effort to develop them. Unifying these two approaches yields the best of both worlds, with the
versatility of deep AI in being able to fit almost any dataset and the explainability of traditional AI.
To do so, we learn the representation of observations using a deep network. These representations
are used by a system involving discrete components to make explainable predictions about the
environment.

The quality of explanations given by such an agent would depend on the learned representa-
tion. Specifically, a representation of the observation in which every variable depends on every
variable would be practically useless: an action potentially changes all of the variables, and,
therefore, an explanation of action’s effect would require to list all of them. Since the length of an
explanation is crucial, the effect of an action should be describable by a change in only a few
variables [107, 21, 49].

The current explainable RL agents can be classified into three following categories1. First,
many projects learn sparse representations in terms of the feature vector sparsity: the predicted
learned features associated with an observation are sparse at each time-step as a vector. Such a
condition, however, is neither necessary nor sufficient for the explanations of the dynamics to
be simple. Indeed, any sparse coding technique will yield sparse feature vectors (for example, by

1See chapter 6 for detailed references
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assigning the first k most sparse vectors to all the k states of the MDP in case of a finite MDP), but
a feature at the next time-step would depend on many features at the previous time-step. Indeed,
without any assumption on the way the sparse features are obtained, two neighboring states can
have drastically different representations. Thus, an action potentially changes all of the variables.
This demonstrates that sparse feature vectors are not sufficient to have simple explanations. On
the other hand, it is possible to have simple explanations without sparse feature vectors. Indeed,
the state of a CartPole environment has all of the components being non-0 most of the time,
and, yet, these components comply with a simple explainable kinematics equation. Thus, sparse
feature vectors are not necessary for simple explanations.

The second approach for explainable RL [55] is to apply feature attribution to the convolu-
tional networks representing policies, and the analysis of circuits of the network is performed.
This approach gives a) the parts of the image most relevant to predict the action and b) the
visualization of what each neuron in the network is activated with. While such an approach is
extremely robust to the type of the underlying agent (the analysis is performed after the training
and does not require any changes in the architecture), the drawback is that it should be per-
formed for every input image: we do not know how a particular new image would affect the
outputs, since each output action still depends on all of the pixels.

Finally, a line of work is investigating causal explanations of the agents’ actions. This means
that a causal graph corresponding to the environment is obtained, and an explanation for an
action is then a simple path-finding from the action node to the reward node in this graph. The
drawback of the current projects is that the graph is either given manually (by hand), or learned
with significant manual work, such as designing the feature space. In this project, we extend this
line of work by making the graph learnable end-to-end from the raw observations.

We would like to automatically uncover the simple structure in the underlying complex
high-dimensional observations that the environment dynamics generates – uncover the succinct
"laws of physics" [8] that the environment operates with. This would make the actions of an
agent explainable. It makes the actions of the agent explainable in terms of the "laws of physics"
that we learn. In terms of Model-Based RL [28, 23, 70] (an RL agent equipped with a model of
the environment), we would like to learn a simple model of the environment. Specifically, we
would like each variable in the model to depend on the fewest possible variables at the previous
time-steps. This would make actions explainable in terms of the variables an action changes,
and the explanation would be short. The model is the "good-old-fashioned" component, since it
includes discrete elements: the variable’s causes consist of a set of elements, rather than an array
of numbers of weights for all possible causes. Mathematically, we require sparsity of the model’s
graph of dependencies – the predicted output for a variable depends only on a few variables at
the previous time-step. If represented as a graph (with cause-variables at the current time-step
as parents and effect-variables at the next time-step as children), this graph needs to have fewest
possible edges.

To allow for such a simple model, we need to change the representation [73], from raw high-
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dimensional observations to the features, which the model predicts for the next time-step. Such
features are obtained from a deep learning decoder2, a function mapping observations to features.
Given a decoder, the model can be obtained by simply fitting it in a supervised way, and only
selecting the cause variables that lead to an improvement in the loss. Therefore, the decoder
determines the simplicity of the model.

Thus, the decoder needs to be trained jointly with the model, and it is indirectly regularized
by the model: the model is directly regularized for sparsity (in terms of the number of edges),
and the decoder needs to output data that such model can predict. In our approach, the decoder
is a neural network, and the dynamics model is also a neural network with a special mechanism
to enforce the sparsity of the architecture.

If the the decoder is not additionally regularized for non-degeneracy, it is possible for the
system to always predict constant features. This correspond to closing one’s eyes and "predict-
ing" successfully that everything that follows will be dark. The decoder needs to preserve the
information that is relevant to the task the system is required to solve. Both in the real world, and
in games, not all parts of the observations need to be predicted to achieve goals. For example, the
color of an obstacle that a robot encounters is likely not important when it comes to avoiding it.
However, this is task-specific, because, for example, a table is much less dangerous as an obstacle
compared to water (a robot will be damaged if put into water, while an encounter with a table
will likely only result in a loss of time when accomplishing a goal). Therefore, the model needs to
predict task-specific features [24].

In this project, we use the two popular types of regularization: we either predict the reward
(thus, only the aspects of observations relevant for predicting the reward are kept), or the whole
observation (all the aspects of the observation are represented in the latent features). This is
achieved by introducing a reconstructor – a network that predicts either the reward or the full
observation given the latent features.

Our approach allows to obtain "laws of physics" of an environment, or, more specifically, a
sparse Causal Model [99, 130] representing the environment’s dynamics. Our work can be seen
as an experimental confirmation of the Consciousness Prior proposal [13], specifically, the part
that simple dynamics models learn to interpretable representations [9, 25, 50]. If an environment
allows for a complete separation of some parts of its dynamics (for example, termination of the
episode only depends on the health of the player, and another variable, such as the number
of ammunition does not affect the health), out approach would capture it, because a graph
with two components has less edges than a connected graph. This way, we disentangle the
representation, as it consists of (recurrent) independent mechanisms. Such a model is very useful
for explanations, because an effect of each action can be described in terms of changes in only a
few variables (out of many). For example, for Cartpole with images as observations, our approach
is expected to output the 4 features representing cart’s and pole’s position and velocity.

2We call it a decoder rather than an encoder because the observations are already encoded by the function mapping
the simple environment states such as the cart’s position and velocity into the high-dimensional observation
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The main challenge when implementing our approach is combining all the requirements
(sparsity of the causal model, learning the decoder, and the non-degeneracy of the decoder) into
a single training procedure. Specifically, we compare several methods (simple aggregation of
losses with coefficients, primal-dual method for optimization under constraints, and an adaptive
scheme for choosing the loss coefficients) and employ several useful tricks (such as using a
relative Mean Squared Error (MSE) loss to have an interpretable magnitude of the loss, and
adding the sampled binary mask of selected cause features to the model that predicts the effects),
and use different methods to enforce sparsity (from l1-regularization to discrete variables with
various methods to compute the gradients). We present an ablation study to show the effects of
various tricks and techniques used.

We design a simple toy environment to illustrate learning of sparse causal models from high-
dimensional data, and show that our approach successfully obtains the minimal causal graph
on it. Surprisingly, the method finds a simpler (but correct) graph for the toy environment than
the authors anticipated. Additionally, we illustrate the same positive behavior on a grid-world
environment.

Contribution. This thesis presents, up to our knowledge, the first successful result on learning
a sparse causal model jointly with the representation on a challenging high-dimensional problem
with our approach CauseOccam. While the parts of the "recipe" used, such as discrete variables
to learn a sparse causal graph can be found in existing literature, combining them into a working
system that learns the representation and the sparse causal graph, along with the required
modifications and the techniques, is a novel main result. The main difference with respect to
existing methods of learning abstractions in RL is that our only prior is the sparsity (simplicity)
of the learned model in the latent space. We do not add any additional priors or assumptions
[45, 133] on the feature space, on the environment, or on the agent. We briefly mention the
implications of our work on the Integrated Information Theory [117] of consciousness.

The result of this work can be used to improve significantly the explainability of Reinforce-
ment Learning agents. A learned causal graph opens the possibility to drastically reduce the
amount of data required to ground [77, 58] the various aspects of the observations with natural-
language sentences. In this way, a dataset containing only two sentences "cart going left" and
"cart going right" with two data points will likely result in a mapping of the sentences to the
learned velocity variable. In contrast, if we ground raw images this way, the model is likely to
overfit to the particular details that the image has (spurious correlations), and will not depend
on the true cause. Sparse causal graph-based or natural language-based explanations [89, 38, 2]
of agent’s actions would allow for faster certification of agents for mission-critical applications.

Secondly, since the learned model is the simplest one, it is likely to be less prone to overfitting,
and, therefore, more robust to distributional shift [121, 49, 102]. In this way, it would be easier to
adjust the agent to a novel environment either without modifications (because the model relies
more on a discrete set of concepts, than on the whole vector of features), or with re-training the
decoder only (for example, if the shape of an obstacle has changed, only the decoder needs to be
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updated). For the latter part, the training should take less time, because the bulk of the problem
is already solved – the model knows how to avoid obstacles.

Source code. The source code for the project is available at

github.com/sergeivolodin/causality-disentanglement-rl
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Chapter 2

Background

In order to proceed, we need to introduce several important concepts: model-based reinforce-
ment learning, causal models, methods for enforcing sparsity and methods for computing gradi-
ents for discrete variables.

We useR to denote real numbers, [n] to denote the firstnnatural numbers ([n] = {1, 2, ..., n} ⊂
N). For a vector withn dimensions x = (x1, ..., xn) ∈ Rn, we use ‖x‖p = (

∑n
i=1 |xi|p)

1/p the p-norm

ofx. The specific cases that we use are the 1-norm ‖x‖1 =
n∑
i=1
|xi|, and the 0-norm ‖x‖0 =

n∑
i=1

1xi 6=0

– number of non-zero components in x (1z = 1 if z is true, and 0 otherwise). Given a distribution
X, we write x ∼ X meaning that the random variable x has the distribution X (x "sampled
from" X). We write Ex∼Xx meaning the expected value of x when sampled from a distribution
X. For two vectors x, y ∈ Rn, we define the element-wise product as x� y = (x1y1, ..., xnyn). For
p ∈ [0, 1], Be(p) is the Bernoulli distribution: if b ∼ Be(p), P (b = 1) = p and P (b = 0) = 1− p. We
write the probability density function of a continuous random variable x ∼ X as fX(x).

2.1 Reinforcement Learning

The standard Reinforcement Learning framework consists of an environment µ and an agent π
(see Figure 2.1). The environment and the agent interact during an episode consisting of T <∞
discrete time-steps. First, the agent receives an observation o1 ∈ O from the environment, where
O is the observation space. Next, the agent executes an action a1 ∈ A where A is the action space.
Next, the environment gives the agent a) a scalar reward r1 ∈ R where R ⊆ R is the reward space,
and b) the next observation o2 ∈ O. Next, either the environment terminates the interaction,
in this case, T = 2, or the cycle repeats (the agent executes an action, etc). We introduce the
termination variable dt ("done") as dt = 0, t < T and dT = 1.

A history (or an episode, or a rollout) of the interaction up to time-step τ consists of all the

11



Environment

Agent
Figure 2.1: The reinforcement learning framework. An environment gives an observation ot and
a reward rt at time-step t, and the agent responds with an action at. Then, the cycle repeats.

variables in the interaction in chronological order: hτ = (o1, a1, r1, o2, ..., aτ−1, rτ , oτ ).

For each time-step, the following holds: (ot, rt) ∼ µ(at−1, ht−1) and at ∼ π(ht). This means
that the observation and the reward at step t is defined by the environment µ given the previous
history, and the action at the step t is defined by the agent given the previous history.

We say that hT ∼ (µ ↔ π) if the history hT was obtained from an interaction between the
environment µ and the agent π.

The value is defined as the discounted sum of rewards: V (hT ) =
T∑
t=1

γtrt, where γ ∈ (0, 1] is

the discount factor. The goal of the agent is to find such π that EhT∼(µ↔π)V is maximized.

In our project, A is a finite set (the case of discrete actions). For example, it could be A =

{up, down, left, right}1. We assume that O = Ro, where o is the dimension of each observation.
For example, o = 210× 160× 3 for 210 rows, 160 columns and 3 RGB channels for an Atari [16]
observation, or o = 128 for the 128 RAM components in the RAM version. The reward space R is
bounded: R = [rmin, rmax] ⊂ R.

Additionally, we consider the Markov class of environments: the next time-step only de-
pends on the previous time-step in the history, and not on the ones before it2. For this class of
environments,

(ot, rt) ∼ µ(at, ot−1), at ∼ π(ot)

For example, for CartPole [16], ot is obtained using the kinematics equation, and at is com-
puted based on the velocities and the positions of the system.

1Our framework should support real-valued actions, they would be treated the same way as real-valued features
without any difference

2A typical workaround to make some non-Markov environments to comply with this property is to stack a few
observations together
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Figure 2.2: A single time-step model Mo predicts the next observations ôt+1 ≈ ot+1 given the
current observations ot and the actions at.

Special important classes are deterministic environments – ones where µ is a constant for
every history (and not a distribution), and deterministic agents – ones where π is a constant given
a history (and not a distribution).

In what follows, we consider Markov deterministic environments with deterministic agents3.

2.2 Model-based reinforcement learning

Model-based reinforcement learning [28, 23, 70] agent additionally includes a model of the
environment Mo

4 which is a function mapping the current observation ot and the action taken
at to the predicted next observation ôt+1 (see Figure 2.2):

ôt+1 = Mo(ot, at)

This function has the same signature as the environment. It is trained to fit the true dynamics:
‖ot+1 − ôt+1‖ → min.

Since predicting the high-dimensional observations is computationally expensive, the obser-
vation model is often decomposed into three components: a decoder, a feature model, and a
reconstructor:

Mo(ot, at) = R(Mf (D(ot), at))

Here, the decoder D maps an observation into a low-dimensional latent feature space ft =

D(ot), ft ∈ Rf with f being the dimension of the feature space. The feature model Mf predicts
next features from the current ones ft+1 = Mf (ft, at), and the reconstructor R maps the features
back to the observation space: ôt+1 = R(ft+1).

3To account for the stochasticity, the decoder and reconstructor should include an additional sampling step, and
noise variables should be additionally injected as potential causes into the model

4The index o means that the model works in the observation space
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This way, the computationally expensive reconstructor can be fit on two kinds of data: end-
to-end to predict the next features ‖ôt+1 − ot+1‖ → min where ôt+1 = Mo(ot, at), and to predict
the current ones ‖ôt − ot‖ → min, where ôt = R(D(ot)) ≡ R(ft). This way, the convergence is
sped up.

Another technique prevents predicting high-dimensional observations altogether by re-
placing R with a value function predictor [109, 6], which is fit to predict the reward-to-go

Rt(hT ) =
T∑
τ=t

γτ−t+1rτ : ‖R̂t −Rt‖ → min where R̂t = Rvalue(ft).

2.3 Causal modeling and deep causal modeling

Structural Causal Models [106, 130, 51] are a subclass of the usual models fitting data from some
distribution, in which we explicitly define the set of variables a given variable could depend on.
For example, if we have a dataset with a time series of the number of cancer patients, and one
with a time series of the number of smokers, we could just fit an autoregressive model to predict
both time series using both values. However, we could explicitly limit the effect of one time series
on the other in our model, by simply not including it as the input to the model. In this way, we
can discuss the differences in the losses when regressing the number of cancer patients given
the time series with the smokers data: if this difference is not 0, it could be that this data suggests
that smoking causes cancer.

More formally, suppose we have a set of variables fi, i ∈ [f ] = (1, ..., f). These variables
change with time and form time series f t=1

i , f t=2
i , ..., f t=τi , ... for i ∈ [f ]5.

A deterministic structural causal model (SCM) with 1-step dependencies is a set of functions
Fi, i ∈ [f ], which output the value of the feature i at the current time-step given a subset of
features PAi at the previous time-step: f t=τi = Fi(f

t=τ−1
j , j ∈ PAi). In the following, we write

Fi(PAi) ≡ Fi(f
t=τ−1
j , j ∈ PAi). For example, if PAi = [f ] for all i ∈ [f ], each feature i depends

on all features j at the previous time-step. This is the most general case – as all SCMs will fall into
this category. However, we would like to find structure in the data: some features do not require
all the features to predict them. For example, in a game the coordinate of the player is unlikely
to depend on its ammunition. There could be a correlation (for example, having collected some
inventory allows access to another room), but the ammunition is not required to predict the
position, as we could just use the previous position, the action taken, and whether or not there
are any obstacles around instead.

Granger causality [10] is defined in the way as in the example above: a feature j can be
excluded from PAi if the best function (measured by the Mean Squared Error loss) that predicts
fi from PAi \ {j} has the same loss as the best function that predicts fi from PAi.

5We write time indices below for the whole vector fτ = (f t=τ1 , ..., f t=τt ), and we write them above, if we additionally
specify the index of the feature f t=τi
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Figure 2.3: The model F1(f
t � B1) only uses features determined by the mask B1 = (0, 1) to

estimate the value of f̂ t+1
i

More generally, we set δ(PAi, j) = infFi Et‖fi − Fi(PAi \ {j})‖ − infFi Et‖fi − Fi(PAi)‖. This
is the difference in the losses without and with a feature j when predicting the feature i, given
the current set PAi. Given a threshold ε > 0, if δ(PAi, j) < ε, we could exclude j from PAi, and
this would only worsen the prediction quality by ε.

We note that while Granger causality does not imply "proper" causality [99], and only imply
correlation, we are applying it in the context of Reinforcement Learning. In RL, actions truly
cause the observations to change [105], and, therefore, Granger causality can be seen as a way to
uncover the structure of the environment.

2.3.1 Neural Granger Causality

In order to find Fi in practice, we model them with neural networks [115, 72, 97] with input
size f . Each function is Fi : Rf → R. In order to account for the sparsity of the inputs PAi, we
pre-multiply the input to each function Fi by a binary mask Bi ∈ {0, 1}f (see Figure 2.3):

f̂ t+1
i = Fi(f

t �Bi)
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Next, we fit functions Fi using least squares regression:

L =
1

T

f∑
i=1

T∑
t=1

(
f t+1
i − f̂ t+1

i

)2
→ min

The gradient with respect to the parameters of Fi is computed in standard way, and we
present methods to enforce sparsity of Bi in the next section.

2.4 Enforcing sparsity in deep architectures

Suppose that we are fitting a loss function which depends on a binary variable, like in the
previous section:

L =
1

T

T∑
t=1

(yt − F (xt �B))→ min
F,B

Here, yt ∈ Ry is the target, xt ∈ Rx is the input data, and B ∈ {0, 1}x is a binary mask.

One (very inefficient) method to solve this problem is to a) go over all possible masksB b) for
each of them, find the best model F c) select the most sparse ‖B‖0 → min, such thatL(B) ≤ ε for
some threshold ε. The complexity of such search isO(2x), which is not feasible even for x = 20.
In our setups, even for the simplest environment, x > 20. In general, this problem would be
NP-hard, as it is the feature selection problem.

We can use gradient descent on B if we relax the problem. There are several methods for it.

1. The obvious solution is to allow Bi ∈ [0, 1] instead of Bi ∈ {0, 1} and regularize the model
with ‖B‖1 [114]. This would enforce sparsity on B. However, since we are using a multi-
layer network, this solution would not work: in practice, the coefficients in B are never
exactly 0, and the subsequent layers can multiply the incoming value by a large constant.
Therefore, while B is sparse, the network could actually still be using all of the features.

2. In the rest of the methods [97, 1, 78, 71, 131], we sample (element-wise) B ∼ Be(P ) from
the Bernoulli distribution, where P ∈ [0, 1]x is a matrix of probabilities. The computation
of the gradient of the loss with respect to the parameters of the distribution is described in
the next section
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2.5 Methods to compute gradients of discrete variables

This section describes standard methods to compute gradients with respect to a binary variable.
We have the same setup as in the previous section.

We sample Bi ∼ Be(Pi(θi)), where θi parameterizes the probability Pi, and, therefore, the
distribution Be(Pi(θi)).

We want to compute a gradient of ∂L
∂θi

for one of the elements Pi The list of methods follows
[15, 129, 88].

0.0 0.5 1.0
p

0

2

4

Egp,gq
dzp
dp

τ = 0.50

τ = 1.00

τ = 2.00

0.0 0.5 1.0
p

0

2

4

Vargp,gq
dzp
dp

Figure 2.4: Gradient for Gumbel-Softmax for different parameters τ ∈ {1/2, 1, 2}. We obtain it
by considering the Gumbel-Softmax estimate zp = 1/(1 + exp((log(1 − p) − log p + gq − gp)/τ)
and noticing that δ = gq − gp has a Logistic distribution. We compute the expected gradient for
τ = 1 and τ = 1/2 via symbolic integration with Wolfram Mathematica, and using numerical
sampling for τ = 2 (the integral as a function of p does not seem to have a symbolic value for
τ = 2). Both the expectation and the variance of dzpdp have asymptotes at p = 0, 1. Specifically,

limp→0,1 Edzp/dp = +∞, and limp→0,1 E (dzp/dp)
2 = +∞: the gradient has a high expected value

and is also noisy. The gradient is well-defined at p = 1/2: its expectation and variance have a
limit at p→ 1/2, even though the symbolic expression contains p = 1/2 in the denominator. For
example, for τ = 1, Edzp/dp = (2− 4p+ log p

1−p)/(2p− 1)3.

1. REINFORCE gradient. Consider EL′θi = ∂
∂θi

EBi∼Be(pi), i∈[x]L(b1, ..., bx). We split the expec-
tation into two: EL′θi = ∂

∂θi
EBi∼Be(pi)EBi∼Be(pj), j∈[x], j 6=iL(b1, ..., bx). Next, we write EBi ex-

plicitly with Eb\i meaning EBi∼Be(pj), j∈[x], j 6=i:

L′θi =
∂

∂θi

[
piEb\iL

∣∣
Bi=1

+ (1− pi)Eb\iL
∣∣
Bi=0

]
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Now, only pi depends on θi, and the expected loss Eb\iL does not. Therefore,

L′θi =
∂pi
∂θi
·
[
Eb\i

(
L
∣∣
Bi=1

− L
∣∣
Bi=0

)]
The second multiplier on the right-hand side in the equation above is the difference
between the expected losses with the variable Bi on and off, while the expectation is taken
with respect to all the other binary variables.

Now, if we have a batch with sampled masks Bi, in which the variable Bi takes the value of
"1" N+

i times, and the value of "0" N−i times, we can set up a sample mean estimate:

L′θi ≈
∂pi
∂θi
·

 1

N+
i

T∑
t=1,Bti=1

L(b1, ..., bx)− 1

N−i

T∑
t=1,Bti=0

L(b1, ..., bx)


Note that we have to have at least one sample with Bt

i = 0 and one with Bt
i = 1 for

this expression to be valid. Otherwise, the gradient is undefined, and the update is not
performed for this component of the gradient.

The drawback of such an approach is high variance, pertinent to REINFORCE estimators.
The advantage is its simplicity of tuning (it has no hyperparameters), and the fact that the
gradient estimate is unbiased (with increases in batch sizes T , the gradient has a limit of its
true value, by the Central Limit Theorem).6

In this approach, θi ≡ pi. In order to keep the values of pi in [0, 1], we simply project to [0, 1]

after each gradient step: if p′i > 1, we set pi = 1, and the same for p′i < 0.

2. Straight-through estimator. We set θi ≡ pi and simply ignore the fact that there was sam-
pling:

∂EL
∂pi

=
∂EL
∂Bi

Here, we simply compute the gradient with respect to the variable Bi, as if it were a real-
valued one.

3. Gumbel-Softmax [63]. In the forward pass (when computing the value of the loss), we
sample from the Bernoulli distribution. In the Backward pass, we compute the gradient as
follows. Consider the probabilities pi and qi = 1− pi corresponding to sampling either 1 or
0 (two categories).

We define lp = log pi + gp and lq = log qi + gq. Here, gp and gq are independent samples
from the Gumbel distribution: a continuous distribution with a density function fgp(x) =

6This is called a REINFORCE gradient because it uses the same technique – log-likelihood trick, as the
REINFORCE algorithm for Reinforcement Learning. Indeed, consider the log-likelihood trick: ∂/∂θiEBiL =
∂/∂θi

∫
p(Bi)L(Bi)dBi =

∫
∂p(Bi)/∂θiL(Bi)dBi =

∫
∂ log p(Bi)/∂θip(Bi)L(Bi)dBi = EBi∂ log p(Bi)/∂θiL(Bi).

For the Bernoulli distribution, ∂ log p(Bi)/∂θi = ∂pi
∂θi

1
pi

if Bi = 1 or − ∂pi
∂θi

1
1−pi

otherwise, and the denominators
cancel out with the probability mass function.
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exp(−(x+exp(−x))). It has the following property: arg max[lp, lq]
d
= Be(p): the distributions

are equal.

Now, we replace the arg max with soft arg max:

Bi := zp =
exp(lp/τ)

exp(lp/τ) + exp(lq/τ)

When τ → 0, zp
d→ Be(pi) (soft arg max becomes arg max). If τ →∞, zp → 1/2.

For τ ∈ (0,∞), We set the (biased) gradient to be:

∂EL
∂pi

:=
∂EL
∂Bi

∂zp
∂pi

.

The advantage is that the gradient is defined even for a single sample. Compared to the
previous approach, there is no additional noise due to the fact that a sample estimate is
used.

The Figure 2.4 shows the expected gradient of the estimator [5] with respect to the prob-
ability. The asymptotes at p → 0 and p → 1 mean that the gradient becomes bigger, as
the entropy of the distribution decreases. Therefore, the probabilities never reach these
terminal values, as the noise "pushes" them away from these values.

In our project, it is important that the sampling probabilities actually approach the value
of p = 1 (see subsection 3.2.5). Therefore, we would need to modify Gumbel-Softmax with
an additional thresholding mechanism to update the model parameters.

In our setup, we use REINFORCE implementation as the simplest one.

The Gumbel-Softmax trick (without modifications) would result in duplicated variables, as
the probabilities never reach p = 1, see subsection 3.2.5.
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Chapter 3

Design of CauseOccam

...

Latent
environment

state
(unknown)

Observation

Learned
features

...

...

GE GE GE

Space Dynamics
Complexity

Low by
searching

for it

High

Low by design
of the

environment

int x;
int lives;
bool a_left;
bool a_right;

Example

if(lives > 0) {
 x += a_right;
 x -= a_left;
 if(x > 20)
   x = 20;
 if(x < -20)
  x = -20;
}

Dynamics Dynamics model

lives

lives

Figure 3.1: Step representations used in the project. At the bottom, the environment’s Game
Engine (GE) generates the next state st+1 given the previous state st and the action at. Next, the
states are encoded into high-dimensional observations ot = E(st). The true state dynamics st,
as well as the encoder E are unknown. The proposed methods finds a feature space ft = D(ot)
by applying the decoder D, in which the dynamics becomes simple. The dynamics in the space
of features is modeled by the function Mf . On the right, the parts of the dynamics model are
shown for the MsPacman [16] game.

We have an agent π interacting with the environment µ. We start from the model-based
Reinforcement learning setup with a decoder and a reconstructor. We would like to obtain the
feature space in which the model Mf becomes most simple in terms of a metric K.

We consider a model of the environment f̂t+1 = Mf (ft, at) in the sense of section 2.2. Ad-
ditionally, we would like some components of ft and at to be ignored when predicting some
component of the whole feature vector fi,t+1. We view the model Mf = [M1

f , ...,M
f
f ] (split into

scalar functions predicting each feature) as a causal model in the sense of section 2.3. The set of
variables of this causal model contains all features, all actions, and additionally the variable r for
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Figure 3.2: An example of a Structural Causal Model we are looking for. Here, the number of
features f = 2 and the number of actions a = 2. The equations can be written as f̂1t+1 = Ff1(f1t , a

1
t )

(next time-step f1 depends on itself at the previous time-step, and on whether the action a1
was taken), f̂2t+1 = Ff2(a1t , a

2
t ), r̂t+1 = Fr(f

1
t ), d̂t+1 = Fd(f

2
t ). The masks corresponding to this

graph equal Bf1 = (1, 0, 1, 0) (in order of f1, f2, a1, a2), Bf2 = (0, 0, 1, 1), Br = (1, 0, 0, 0), and
Bd = (0, 1, 0, 0)

the reward and the variable d for the "done" (see section 2.1 for definitions):

X = {f1, ..., ff , a1, ..., aa, r, d},
Xin = {f1, ..., ff , a1, ..., aa}
Xout = {f1, ..., ff , r, d}

The variables Xin ⊂ X are the input (ones used for prediction), and the variables Xout ⊂ X
are the output (ones being predicted). We would like to predict the next features, as well as the
reward r and the done d at time-step t + 1 given features and actions at the time-step t. The
prediction of the model for a variable x consists of pre-multiplying the input features (variables
ft and at, written as a vector in what follows as fat = [ft, at] ∈ Rf+a) with the binary mask Bx, to
select the input features, and then applying the SCM function Fx: xt+1 = Fx(fat �Bx), x ∈ Xout.

f̂1t+1 = M1
f (ft, at) = Ff1( [ft, at] �Bf1 )

...

f̂ft+1 = Mf
f (ft, at) = Fff ( [ft, at] �Bff )

r̂t+1 = M r
f (ft, at) = Fr( [ft, at] �Br )

d̂t+1 = Md
f (ft, at) = Fd( [ft, at] �Bd )

The Figure 3.2 shows an example SCM.
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3.1 Measure of complexity

3.1.1 Sparse features are neither necessary nor sufficient for interpretability

First, we give a detailed example of why feature sparsity does not imply interpretability, and
interpretability does not imply feature sparsity.

Example 3.1.1. Consider the 2D grid-world environment from Figure 3.3 with H,W > 2. It has
HW states. Consider binary features fi ∈ {0, 1}. Given the feature dimensionality f , we select the
first HW most sparse vectors in {0, 1}f to map to the states (this is possible in case if 2f ≥ HW ).

In case if f = HW , we have maximal feature sparsity: each feature vector has at most 1

component. Feature vectors become 1-hot vectors coding for the state numbers. However, the
model lacks interpretability because it does not capture the structure of the environment – in truth,
it has only 2 independent state components x and y, and actions affect only the corresponding
coordinates.

One might argue that the feature dimensionality is too high in this case, and this is the cause
of the lack of interpretability.

In case if HW ≈ f + f(f − 1)/2, we use all vectors with 1 component and all vectors with
2 components. However, this model is also not interpretable – it also does not capture the two-
dimensional dynamics.

If we continue decreasing f further, some features would have many non-zero elements, and
sparsity would be lost.

This shows that feature sparsity in a reasonable example is not sufficient for interpretability.

Now, a coding with two features with f1 = x and f2 = y solves the problem – each action
corresponds to one feature, and features have a simple dynamics. However, this coding is not sparse
– in fact, the values of the features are never 0. This shows that feature sparsity is not necessary for
interpretability.

To be fair, sparse features do help interpretability in case if an observation can contain a
limited number of objects, one at a time. For example, an observation either contains an enemy,
or the health bar. Our approach can be seen as a generalization: these two variables then can
be replaced with one and modeled with our framework. We note that our approach also has
flaws (see the failure modes below), and the question of defining human "simplicity prior"
mathematically in all cases remains open.

In addition, we must clarify the following point. In what follows, we will induce sparsity on
the feature vectors, but in a very specific way. First, we consider sparse feature vectors (with some
components zeroed out) as an input to the model predicting the same features, i.e. a dynamics
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model. The model takes only certain features as the input. Importantly, the sparsity mask is
different for predicting different features, and is not reducible to the sparsity of the feature vector
as a whole. In fact, for all of the environments that we use, the feature vector is not sparse as a
whole.

Most known interpretable models (natural language inter-sentence dependencies uncov-
ered with attention, causal models used for medical data, physics equations only capturing the
neighbors of a particle to describe its dynamic, sparse linear regression) only have few compo-
nents: they are sparse. However, sparsity alone does not necessarily mean interpretability. In
what follows, we will show that some sparse models are not interpretable, and give methods to
overcome that.

3.1.2 Sparse fan-in models sometimes are sufficient for interpretability, and usu-
ally are necessary

In general, simplicity of a model can be described by Kolmogorov complexity (see Appendix A).
Since this quantity is uncomputable, we set the proxy for the Kolmogorov complexity for our
class of models as the total number of non-zero components in the mask, or the number of
edges in the Structural Causal Model:

K̃(B) =
∑
x∈Xin

‖Bx‖0

Note that we only count the complexity of the mask, and do not count the complexity of the
functionsFx, or of the decoderD. This stems from two reasons. The first reason is purely practical
– there does not exist a measure of complexity for neural networks Fx or D that could be easily
optimized for1. The second reason is there by design. Namely, This issue is somewhat alleviated
by the fact that neural network of fixed architecture can only implement functions of bounded
Kolmogorov complexity: it only has a finite number of arithmetic operations. In this way, the
total complexity of all learnable parameters can be described asK(Mo) = K(D)+K(B)+K(Mf )

where K(D) and K(Mf ) are bounded.

However, it is important to set the class of functions that represent the decoder D and the
model Fx properly. Otherwise, the following situation can occur.

Proposition 3.1.1. (Too complex decoder) Consider an arbitrary deterministic environment µ
and a deterministic policy π. With a suitable decoder, it is possible to obtain K̃(B) = 3 (minimal
value) and Lrec = Lfit = 0

1One candidate is the norm of the Jacobian as a measure of complexity, however, this norm would be lower for a
sin(x) function than for a linear function x for some arguments, because the derivative is lower. Another option is
to use the same technique with disabling features [86] to limit the fan-in of the neurons in the network to induce
structural sparsity. However, this would result in an even more non-convex and hard-to-optimize problem than this
thesis presents. This approach is out of the scope of this thesis.
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Proof. The main idea is to map a multidimensional space into a single-dimensional one. There
are several ways to do that

• Consider the space of all possible states S = Rs of the true environment.

It is possible to bijectively map a unit interval (0, 1) to a unit square (0, 1)2. The mapping
is highly non-smooth, like the Peano curve. Using this technique, we map Rs to Rs−1.
Repeating the process, we eventually map Rs to R1. Now, there is only a single feature
describing the state.

• For discrete state spaces, an even simpler approach is possible: since the number of states
is finite, it is possible to represent each state using its number. This trick can also work for
continuous states with discretization.

Now, f = 1 (only 1 feature is required). Given features ft, we can compute ft+1 by first
reconstructing the observation (here the bijectivity matters), and then applying the "Game
Engine" (the dynamics of the model in its internal state space):

ft+1 = D(E(GE(E−1(D−1(ft))), at))

Here, the model Mf depends on a single feature (because we only have a single feature), the
reconstruction is perfect, and prediction is perfect.

The complexity K(B) = 3: the only feature is used to predict itself, as well as the attributes d
and r.

While the complexity of the binary maskB is small, the complete model is extremely complex:
the functions D and D−1 compute the non-smooth bijection mapping a unit interval to a unit
square.

While in practice, it would be hard to find such a function with gradient descent, as it is highly
non-smooth, there is another example which shows that the complexity of D and Mf should not
be exceedingly high:

Example 3.1.2. Consider a grid-world with 2 components of the player (see Figure 3.3): x (hor-
izontal) and y (vertical) taking discrete values: x ∈ [H] and y ∈ [W ]. The actions −x and +x

affect the horizontal coordinate x. The actions−y and +y affect the vertical coordinate y. We can
represent this environment by 2 features, one for each of the coordinates.

Consider the case of H and W being small (for example, H = W = 2). In this case, we can
design a transition model using only a single feature f1 which takes the following values:
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Figure 3.3: 2D grid-world withH×W cells:H rows andC columns (the image showsH = W = 2).
Actions ±x and ±y change the values of the coordinates. The single feature f ∈ {1, 2, 3, 4}
bijectively maps to the state space. This example extends naturally to H rows and R columns
with x ∈ [H] and y ∈ [W ], and the same set of actions±x,±y.

f1 x y

1 1 1

2 1 2

3 2 1

4 2 2

For example, if x = 1 and y = 2, we set f1 = 2.

Now, the transition model is shown in Figure 3.3. It is quite complex: each feature variable can
potentially result in 3 different states! However, a neural network with enough layers could fit this
dynamics.

A much simpler model appears if we map each coordinate to a separate feature: f1 = x and f2 =

y. In this case, the dynamics for each coordinate is much more simple: f t+1
1 = max(1,min(2, f t1 +

1a=+x − 1a=−x))

Thus, too high model complexity will result in less features used, but the interpretability will
be lost.

Luckily, this pathological behavior disappears as H,W → ∞. While the complexity of the
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coordinate-wise approach does not become more complex, and is always described as f t+1
1 =

max(1,min(H, f t1 + 1a=+x − 1a=−x)), the single-feature approach’s complexity increases. We show
it for the case of "left-to-right" assignment of feature values. For the single-feature model, we
set f = W · (x − 1) + y, and we can reconstruct y = f mod W and x = (f − y)/W + 1. Now,
implementing the z mod n function for z ∈ [kn] with a neural network of constant complexity
and varying n and z is not possible (unless using a periodic activation functions [112])2.

Therefore, for H,W � 1, the model would prefer using two features instead of 1.

"Reusable" decoders and models. This argument shows a natural setting in which it is not
required to count the complexity of the decoder D, and of the SCM functions Fx. Humans do
not re-learn the visual cortex when a new game is presented. Instead, the same architecture is
reused [12, 122, 61, 34, 49, 90], and only the novel high-level behavior is learned. Additionally,
humans do not learn the rules of every game from scratch (for example, learning again that
there are x and y coordinates in every shooter game). Instead, the existing abstractions (such as
WASD keys used to control the player) are re-used. With this in mind, a natural extension of
this work is to re-use the decoder and parts of the model (see section 7 for the concrete future
direction proposal). If we reuse some parts of the decoder, or of the model, their complexity (in
terms of the shortest program describing them) is greatly reduced, when the "bank" of existing
abstractions is given, and only an "index" in this "bank" needs to be specified, instead of learning
the complete model from scratch.

Linear models. A reasonable questions might occur: would it be possible to use the simplest
possible class of models to define functions F – linear models, and "transfer" all of the non-linear
complexity into the decoder? This would be extremely beneficial, as environments would be
extremely interpretable in this space. The following example shows that even for one of the
simplest RL environments, there is no linear feature space that preserves the dynamics and maps
bijectively into observations.

Example 3.1.3. Consider the class of linear models: Mf (ft, at) = Mfft +Maat + b, where Mf is a
matrix of size f × f , Ma is a matrix of size f × a, and b is the bias vector of size f . We are interested
in all environments that can be characterized by linear latent dynamics. In other words, what are
all the environments, for which there exist a decoderD and a reconstructorR, such that there exist
a bijection between the set of observations and the set of feature vectors, and the feature dynamics
is linear?

We show that this class is very small, even with a non-linear decoder. Indeed, consider the
Line-3 environment (navigating on a line with 3 states) – see Figure 3.4. It does not fit into our
definition.

Indeed, first, the bias term in the linear model can be "shifted" into the actions Ma. Suppose
2For example, a ReLU network is a piecewise-linear function, and the number of "switches" is determined by the

number of neurons. Note that the mod function requires at least as many switches as the number of "wraps" of the
argument z w.r.t. the n. Therefore, a ReLU network with a fixed architecture can only implement some but not all
functions z mod n.
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Figure 3.4: Line environment with 3 states. Action a1 corresponds to moving right, and a2 corre-
sponds to moving left. Going left from the left-most state does not change the state, and same for
the right-most state. The variable x increases when going right and takes integer values starting
from 1. Each state with x = i has an associated feature vector fi

that the decoder gives some features for the states f1, f2, f3 (does not matter how, it’s only important
that the features are fixed). Multiplying Maai = Ai, we get two vectors A1 and A2.

Then, f1 = Mff1 + A2 (going left from f1 gives f1), and f3 = Mff3 + A1 (going right from f3
gives f3). Now consider what happens in f2. If we go left, we get f1: Mff2 +A2 = f1. If we go right,
we get f3: Mff2 +A1 = f3. Subtracting these two gives f3 − f1 = A1 −A2. On the other hand, the
"stuck at the wall" equations give us f3 − f1 = Mff3 +A1 −Mff1 −A2 = Mf (f3 − f1) +A1 −A2.
So, equating these two, we get f3 − f1 = Mf (f3 − f1) + A1 − A2 = A1 − A2. This means that
Mff3 = Mff1.

Now, consider the "stuck at the right wall" f3 = Mff3 + A1, and going right from f1: f2 =

Mff1 + A1. But Mff1 = Mff3, which means that f2 = Mff3 + A1. Note the same RHS as for
the "stuck at the right wall". Therefore, f2 = f3, we cannot distinguish between f2 and f3, a
contradiction with the representation being non-degenerate.

This contradiction shows that for this environment, features are either degenerate (a single
feature vector corresponds to two different observations), or the model should be non-linear.

Note that a simple non-linear model is applicable for this environment: f1 = x, f t+1
1 =

min(3,max(1, f t1 + 1a=a1 − 1a=a2)).

These examples show that it is important to set the complexity of the model’s neural networks
correctly. A too simple model would never fit the environment, and a too complex model can
give non-interpretable features.

A practical way to choose the measure of complexity is to first fit a model without sparsity
constraints, select one with minimal complexity still fitting the data, and then run CauseOccam.

Examples. We discuss how we expect this approach to work in a wide range of environments,
and compare it to another interpretability technique where each action is associated [116] in a
change in a single feature. We call the latter the "single-feature action influence framework".
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Environment Sparse Causal Graph

Figure 3.5: The 2D grid-world environment and the SCM that could be extracted from it. The
causal model contains 2 feature components, one for the horizontal coordinate (x) and one for
the vertical coordinate y. The actions left and right affect x, and the actions down and up affect y.

The single-feature action influence framework fails in case if an action influences two features,
and it does not put constraints on features that are not directly affected by agent’s actions (such
as movements of objects in the environment). Our approach can be seen as an extension of the
single-feature action influence framework in a sense that in case if an environment allows for
such a parameterization, our approach would find it as well. Indeed, a single action influencing
a single feature exactly corresponds to a minimal number of edges from actions to features.

We also note that the Non-Linear Independent Component Analysis [36, 60] would not yield
the desired representations in cases where there is significant dependence between features.
Indeed, it ignores the influence of actions on the time series, and, therefore, it would not account
for the number of edges between action-nodes and feature-nodes.

Example 3.1.4. (2D grid-world navigation task, Figure 3.3 and 3.5) Consider an environment
giving 2D images of size H ×W as an observation, and taking 4 actions (left (decrease horizontal
coordinate), right (increase horizontal coordinate), up (increase vertical coordinate), down (de-
crease vertical coordinate)). While the actions correspond to coordinates, the coordinate variables
are latent (hidden) from the agent, as it receives observations instead. In the latent space, the
dynamics is very simple: each action only influences one coordinate, and the transition equation
is simple as well.

If we apply our approach to this environment, it would uncover this latent representation,
guided only by the simplicity of the resulting transition model. The model in this space has 6 edges:
each of the two features depends on itself from the previous iteration (2 edges), and each action
influencing one feature component (4 edges).

For this environment, the simpler approach to associate an action with a feature component
works as well. However, the loss would not be 0, as an action does not always influence the state
(at the boundaries an action does not do anything).

Example 3.1.5. (MountainCar [16]) We consider two possible parameterizations. One uses Carte-
sian coordinates x and y (and their velocities), and the other uses the linear position of the car on
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Figure 3.6: A causal graph for the Atari Breakout environment. The actions left and right move the
pallet (red line below on the left image). The ball’s (a single red dot at the dark space on the left
image) coordinates update via the velocity variables: the horizontal coordinate xt+1 = xt + vxδt
and the vertical coordinate yt+1 = yt + vyδt. If the pallet hits the ball, the ball is reflected, hence
vy depends on x, y and the pallet position: vt+1

y = −vty in case if x = xpallet and y = 0. The ball
can be reflected from the borders of the environment as well, hence vx depends on x and y. If the
ball hits one of the M targets (colored items at the top on the left image), the target disappears,
and a reward is given: hiti = 1 if x = xi and y = yi. If the ball is below the pallet, the episode
terminates, hence d depends on y of the ball.

the track (and its velocity).

The Cartesian coordinates result in an interpretable model with physically realistic equations.
However, in this parameterization, an action influences both of the coordinates, as the car moves
both in x and y directions.

The linear coordinate is compliant with the single-feature framework, but the dynamics equa-
tion becomes more complex (the gravity depends on the angle of the track).

Example 3.1.6. (CartPole [16] with images as observations.) Consider the CartPole environment
from OpenAI Gym. The latent state has 4 components (the positions and the velocities of the cart
and the pole). The model in the latent space has 8 edges: features depend on themselves (4 edges),
velocity influencing the coordinate (2 edges) and action influence (2 edges changing the coordinate
slightly).

Example 3.1.7. (Atari [16] Breakout, Figure 3.6) The objects can be grouped into the pallet that is
controllable by the player (1 horizontal coordinate), two coordinates for the ball (and its velocity),
and one presence feature for each of the individual pieces that need to be destroyed.
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Note that while the single-feature influence model disentangles the coordinate of the pallet
from the rest of the features, it does not put any constraints on the representation for the ball or for
the pieces to collect: they can be represented in any possible way.

Example 3.1.8. (MsPacman [16]) The number of lives is a separate feature, the positions of the
ghost, of food pallets, of the cherry, of the player are features as well.

Note that the single-feature action influence approach again would obtain a good representa-
tion for the Pacman (because its coordinates are affected by the actions directly). It does not enforce
any constraints to obtain a good representation for the ghosts, the food, and the cherry.

Example 3.1.9. (MuJoCo Humanoid [16]) The representation contains the joint position and
velocities, as defined in the MuJoCo environment file. The dynamics equation corresponds to the
physics equations from the simulator.

Since the state components are already corresponding to interpretable quantities (such as coor-
dinates and velocities), applying our approach would not yield novel results for this environment.

If, in contrast, an image is given instead of the state components, our approach is expected to
find the representation space of coordinates and their velocities again.

3.2 Optimization problem for CauseOccam

Overall, we would like to obtain a sparse model without loss of fit quality. Our search space
consists of continuous parameters for D,R, Fx, and discrete parameters Bx for x ∈ Xin (see
above). The figure 3.7 shows the trainable parameters and the losses described in this section.

3.2.1 Relative mean-squared error loss

In order to know how well the model predicts the next state, we use a relative mean-squared
error loss, instead of the standard "absolute" one. Specifically, if the model predicts ŷt, for t ∈ [T ],
and the true values are yt, t ∈ [T ], the relative MSE error is defined as:

ρ(yt, ŷt|t ∈ [T ]) =
1

T

T∑
t=1

(
yt − ŷt
σ[y]

)2

(3.1)

Here, σ[y] is defined as standard deviation of y in case if it is non-zero, and it is defined as 1

otherwise.

Example 3.2.1. Suppose that T = 2, y· = ε · (0, 1) and ŷ· = ε · (1, 0). We compute σ[y] = 0.5ε, and
ρ(yt, ŷt) = 4. This value does not depend on the scale ε of y and ŷ. In contrast, the traditional mean-
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Figure 3.7: The diagram of losses for CauseOccam. The batch of observations ot (left) is fed into
the decoder D, which outputs features ft. The next features ft+1 are predicted using the model
M given the actions at. The model is regularized with a sparsity constraint Lsparse, and fit using
losses Lfit,feat in the feature space (predicting the next features) and in the observation space
(predicting the next observation). The model also predicts the additional reward (r) and done (d)
features. The reconstruction loss is not shown on this figure. See this section for more details on
the losses.

squared error would yield ρmse(yt, ŷt) = 1
T

T∑
t=1

(yt − ŷt)2 = 0.5ε2(12 + 12) = ε2, which depends on

the scale of the features.

It is important that the quality metric does not depend on the magnitude of the inputs, as the
magnitude of the given by the decoder features can be arbitrary high or low.

Example 3.2.2. Suppose that y ∼ Y (i.i.d. samples from a distribution Y ), and ŷ = c is a constant
predictor. Then, the best value of the relative MSE loss ρ is 1 with c = EY . Since neural networks
can fit a constant, we expect that ρ < 1 in our experiments. However, at the beginning of the
training, this value can be larger than 1.

Example 3.2.3. (Discrete-valued variables) Suppose that y ∼ Uniform([n]) – a discrete uniform
variable taking values in {1, ..., n}. Ey = n/2 and Vary = (n2 − 1)/12. In case if ρ(y, ŷ) < ε < 1

2n ,
we compute using the Chebyshev’s inequality: pbad = P (y 6= ŷ) = P (|y − ŷ| > 1) ≤ E(y − ŷ)2/12 =

O(ρn2/12). If we want pbad = 1/n, we obtain a requirement ρ < 12/n3. For a discrete variable with
n = 20 to obtain pbad < 1/20, we will have to have ρ ≈ 1.5× 10−3.

However, if we specify |y−ŷ| ∼ Uniform([0, a]), we have Var|y−ŷ| = (a2)/12, and the condition
P (|y− ŷ| > 1) ≤ 1− 1/a. Setting P (|y− ŷ| > 1) < 1/n gives a < n/(n− 1). Since ρ = O(a2/n2), we
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arrive at a looser condition ρ < 1/n2. For example, for a discrete variable with n = 20, to obtain
pbad < 1/20, we will have to have ρ ≈ 3× 10−2.

Later, we use this estimate for discrete variables to set the threshold values for the relative
MSE loss in the constrained optimization formulation of our problem.

Example 3.2.4. Suppose that y = 0 (a constant), and ŷ ∼ N(0, σ2) – the normal distribution. In
this case, σ[y] = 1 (because the true variance is 0), and ρ(y, ŷ) = Eŷ∼N(0,σ2)(0− ŷ)2 = σ2.

Example 3.2.5. Suppose that y ∼ N(0, σ2) (normal distribution), and ŷ = 0 – a constant. In this
case, σ[y] = σ and ρ(y, ŷ) = 1/σ2Ey∼N(0,σ2)(y − 0)2 = σ2/σ2 = 1.

3.2.2 Non-degenerate decoder

The decoder needs to be invertible (or, at least, "partially" invertible, in a sense that all relevant
information is kept). Note that, technically, it is possible for the decoder to always output 0 for
all observations. In this case, there exist a simple constant model that "predicts" the next state
perfectly (if prediction for d and r is disabled). However, such a model is useless, as it does not
describe any aspect of the dynamics. One way to solve this issue is to introduce a reconstructor
predicting observations from features. See section 2.2 for further discussion.

The reconstruction loss is defined in terms of the expected distance between the recon-
structed and true observations:

Lrec = Eh∼(µ↔π)ρ(R(D(ot)), ot|t ∈ [T ]) (3.2)

3.2.3 Model fit quality in observation and feature spaces

We also would like the model to predict the future time-steps correctly. This can be achieved in
one of two ways.

1. Feature-space loss. We penalize the models’ features if they deviate from the features
predicted by the decoder at the next time-step:

Lfit,feat = Eh∼(µ↔π)|T>1ρ(Mf (D(ot), at), D(ot+1)|t ∈ [T − 1]) (3.3)

Here, we only consider episodes that last more than 1 time-step, because otherwise there
is no "next" time-step to predict.3

3We do not model the "initial state" distribution, because it does not affect model simplicity in terms of K(B),
and it does not affect the SCM functions Fx, and in this project we are only interested in learning the causal graph.
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2. Observation space loss. We penalize the model if the reconstructed observation given the
predicted features matches the true next observation:

Lfit,obs = Eh∼(µ↔π)|T>1ρ(R(Mf (D(ot), at)), ot+1|t ∈ [T − 1]) (3.4)

Next, we compare the two approaches. First, ifLfit,feat = 0, it follows thatLfit,obs = 0. Indeed,
the reconstruction loss Lrec ensures that the next-step features result in correct observations.
And Lfit,feat = 0 ensures that the features are predicted correctly.

In contrast, Lfit,obs = 0 does not imply that Lfit,feat = 0. Indeed, the model can add the
1-st feature to all features: f̂i = fi + f1 and indicate that by adding a large enough number to
another feature: f̂s = fs + 10σ[fs]. The decoder first determines if 10σ[fs] was added to fs, and
then either subtracts f1 or keeps it. This way, Lfit,feat = 0, but the model does not predict the
correct features. While this is fine in case if we are using the learned model for planning, it would
result in a wrong Structural Causal Model. This means that in practice, we need to use Lfit,feat
or otherwise, the learned model function does actually predict the next features, and, thus, the
causal graph might be incorrect.

Example 3.2.6. (Incorrect causal graph when only using Lfit,obs) Consider the Game Engine from
Figure 3.3. The features predicted by the decoder are x and y (not the ones in the figure). The model
is the following function: x̂t+1 = xt + 10 ·1a=+y − 10 ·1a=−y, ŷt+1 = yt + 10 ·1a=+x− 10 ·1a=−x. It
is possible to obtain Lfit,obs = 0, because we can reconstruct both the previous state, and the action
from x̂, ŷ. Indeed, note that |xt|, |yt| < 2. This means that, if x̂ > 10, an action +y was taken. The
rest of the actions are reconstructed in the same way. Next, knowing the actions we obtain xt and
yt. Next, the reconstructor performs "the role of the model", computes the (true) next xt+1 and yt+1,
and then performs the reconstruction. In case if both of input arguments to the reconstructor are
|xt| < 10 and |yt| < 10, the model does not perform the time-step prediction.

The causal graph in this case is incorrect: x depends on +y and−y, and y depends on +x and
−x.

Therefore, we have to use Lfit,feat. However, in practice, even when using the relative loss,
Lfit,feat < ε for a small ε ∈ (0, 1) does not mean that the prediction quality is good.

Example 3.2.7. Consider the Game Engine from Figure 3.3. It has 2 latent variables: x and y. Now,
suppose that the features (not on the figure) are f1 = x and f2 = αy + (1− α)x for α� 1. Suppose
that Lfit,feat < ε. Does it mean that the model "preserves" the information both about x and y?
No.

Indeed, for the variable x, Lfit,feat < ε implies that ρ(x, x̂) < ε, as required. However, for y, it
does not. Indeed, we can show that it is possible to obtain any ε bound on the loss given ŷ = Ey
(the constant prediction giving ρ(y, ŷ) = 1. Assume that x is predicted perfectly. Next, consider the
relative loss

33



   

Figure 3.8: The model F1 predicts the value of the first feature f1t at the next time-step, given the
current features ft+1. The model only uses features determined by the binary mask B1 ∼ Be(P1).

ρ(αy + (1− α)x, αŷ + (1− α)x̂) =
E (α(y − ŷ) + (1− α)(x− x̂))2

σ[αy + (1− α)x]2

.

We assume that x and y are independent under π and have the same variance of c. Then we
compute σ[αy + (1− α)x]2 =

√
α2 + (1− α)2c.

Next, since x̂ = x, ρ = 1/σ2α2E(y − ŷ)2 = α2

α2+(1−α)2 . Since this equation has a limit of 0 when
α→ 0, and since the decoder can give features with an arbitrarily small α, we can make Lfit,feat
arbitrarily small, while the model only predicts the value of x, but not the value of y.

Note that, without the relative loss, it is not even required for the model to predict the value of
x. Indeed, to make the loss arbitrary small, it is sufficient for the decoder to reduce the magnitude
of the features, and for the reconstructor to increase the input weights.

Therefore, we have to use both losses, one in the feature space, and one in the observation
space.

3.2.4 Sparsity loss

In section 2.5 we outline techniques for parameterizing B ∼ Be(P ) and then computing the
gradient ∂B/∂P , so it becomes possible to find the values of B using gradient descent.
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Now we consider the original objective:

K(B) =
∑
x∈Xin

‖Bx‖0

Since B is sampled from a distribution P (see Figure 3.8), we compute the expected value:

EB∼Be(P )K(B) =
∑
x∈Xin

‖Px‖1

.

This happens because for each component, Eb∼Be(p)b = p. Thus, we naturally arrive at the
l1-relaxation of our discrete problem [15]

We define this loss as:
Lsparse = EK(B) =

∑
x∈Xin

‖Px‖1

3.2.5 Ranges of edge presence probabilities and exploration

In case if for some of the probabilities Pxx′ = 0, or Pxx′ = 1, that feature is never selected and is
never active, or is always selected, and the model never explores cases where this feature is not
enabled.

However, we would like to have the casePxx′ = 1 possible in our system. Indeed the difference
in losses Lfit

∣∣
Bxx′=0

and Lfit
∣∣
Bxx′=1

can be drastic, and in the worst case we have Lfit
∣∣
Bxx′=0

−
Lfit

∣∣
Bxx′=1

= f + 2 (in the worse case, without using a single very important important feature,
each output feature can only be predicted as a constant, and the same for the reward and done).
Therefore, if pmax < 1, we have Lfit = (f + 2)(1− pmax), and the loss will not go lower than this
value.

Another issue that pmax < 1 yields is duplicated features. Indeed, if an important feature is
only given with probability pmax < 1 and ε = 1− pmax, it would be beneficial for decreasing the
loss Lfit to duplicate this feature (the decoder uses a spare feature to output the same value).
Then, the model would not receive the value for an important feature with probability ε2, instead
of ε. This decreases the loss ε � 1 times. Therefore, training the model with pmax < 1 would
likely lead to feature duplication.

In contrast, having a lower bound p = pmin > 0 would not have significant effects on the loss,
as adding a non-important feature cannot improve the loss significantly, and definitely cannot
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worsen the loss (because more features are used). Now, since p = pmin ≈ 0, we have

Lfit = pLfit
∣∣
Bxx′=1︸ ︷︷ ︸
L1

+(1− p) fit
∣∣
Bxx′=0︸ ︷︷ ︸
L0

Since L1 ≤ L0, Lfit ≤ pL0 + (1− p)L0 = L0, and L0 ≥ Lfit. On the other hand, Lfit ≥ (1− p)L0,
which gives L0 ≤ Lfit

1−p = Lfit(1 + p+O(p2)) ≈ Lfit(1 + p).

This means that L0 ∈ (1, 1/(1− p))Lfit. For p = pmin ≈ 0, the gap between the two solutions
is small: L0 ≈ Lfit.

It means that the loss with Bxx′ disabled is upper-bounded by the current loss Lfit (where
Bxx′ is only enabled with a small probability). To output the final answer causal graph, we could
threshold these probabilities to 0, and the loss given by this answer graph would only be worse
than the training loss by a small amount in terms of the fit quality.

Example 3.2.8. Let’s consider different cases, assuming that the model was fitted to convergence
on a set of features with a fixed tensor of probabilities. Consider the case of 2 input and output
features, with features being equal and having a deterministic relationship (from input to output).

1. p = 0 for all pairs. In this case, no features are given to the model, and the model will learn
to predict the mean of the output features. The causal graph is empty. The loss is equal to 2

(since standard deviation for each feature is 1 w.l.o.g. because of the relative error).

2. p = 1 for all pairs. In this case, the model uses all features, and the error is minimal. The loss
is 0.

3. p = 0.5 for all pairs. In this case, the model will try to extract as much information as possible
when the feature is present. Essentially, with probability 0.25, the model will give the mean
output feature, and with probability 0.75 it will use either one of the input features, or both
of them. The loss is equal to 2× 0.25 = 0.5.

4. In the general case p ∈ [0, 1], the model has an error of 2 with probability (1− p)2 and a loss
of 0 with probability 1− (1− p)2. The expectation is 2(1− p)2.

Now consider a similar case when the mutual information between features is 0 (they are
independent). In this case, for a probability p, we have the loss being 2 with probability (1− p)2,
a loss of 1 with probability 2p(1− p) and a loss of 0 with probability p2. The expectation is 2(1−
p)2 + 2p(1 − p) = 2 − 4p + 2p = 2 − 2p = 2(1 − p). This loss is higher than for the case of equal
features for all p ∈ (0, 1).

To avoid a case when there are no samples with ξ = 1 (with low p), we limit the range of p
to be p ≥ pmin = 0.01 = 1%. Setting this value higher results in feature duplicates, as the model
tries to predict the outputs even from partially present features. A value of 1% with a batch size of
T = 5000 gives 50 samples with ξ = 1 in the worse case (on average), which is empirically sufficient
to turn features on. To turn the features off, we introduce a sparsity regularizer.
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3.2.6 Adding the mask as the input to the model to adjust for non-stationarity

Consider the data that the functions Fx are fit on, when the probabilities P change:

fat �Bx → xt+1

Since Bx depends on Px, the dataset clearly depends on P . Since the probabilities change
during the training (a feature could be turned on and off repeatedly in search of the best graph),
the problem becomes highly non-stationary – effectively, the model has to re-relearn to rely on
the new set of features that it did not see before. In addition, in case of discrete features, the
model might not be able to distinguish between the case where fat = 0 orBx = 0. It may happen
that in case if f1 = 0 is given, the model should rely on f1 = 0. However, if a feature is not given,
the model should rely on another, more noisy feature. However, an input of 0 does not allow to
distinguish between these cases, and the model would be forced to "guess" (output the expected
value between the two data-sets). A solution for this is to feed the mask to the model as well4:

x̂ = Fx(fat �Bx, Bx)

3.2.7 Separate exploration loss

To speed up the convergence even more for the cases p ≈ 0 and p ≈ 1, we temporarily threshold
the probabilities to be in the range [pexplmin , p

expl
max], and fit the models with masks B sampled from

this distribution. This results in the loss

Lfit
∣∣
p:=pexpl

= EB∼Be(pexpl)Lfit (3.5)

3.2.8 Additional feature transformation ("rotation")

During training, the distribution given by the the decoder is non-stationary, because the feature
space changes to optimize for sparsity. This happens because the model affects the decoder, and
the reconstructor must match the decoder.

When the feature space changes, the reconstruction loss would increase drastically, as the
reconstructor is trained for the "old" feature space. Fitting the reconstructor is costly, and,
therefore, we introduce two separate linear transforms right before and after the model (see
Figure 3.9). These transforms allow to quickly enable or disable features, or to change the linear

4A similar approach can be found in [94, 29], but the ablation study was not done for whether or not it improves
the setup
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Figure 3.9: Two additional linear feature transformations (purple) applied before and after the
model M in order to speed up the convergence. The reconstruction loss path (dotted) bypasses
the additional transformations. See Figure 3.7 for the full description of the components

combination of them:

Lfit,obs = ρ(R(Zpost(Mf (Zpre(D(ot)), at))), ot+1); R ◦ Zpost ◦Mf ◦ Zpre ◦D 7→ ot+1,

Lfit,feat = ρ(Zpost(Mf (Zpre(D(ot)), at)), D(ot+1)); Zpost ◦Mf ◦ Zpre ◦D 7→ Dot+1,

Lfit,m−feat = ρ(Mf (Zpre(D(ot)), at), Zpre(D(ot+1))); Mf ◦ Zpre ◦D 7→ Zpre ◦Dot+1.

These transforms make it simpler for the model to quickly change the feature space, without
affecting the reconstruction loss.

3.2.9 NP-hardness in the general case

In the EPFL semester project at LCN, I considered the linear case of CauseOccam and proved the
NP-hardness. Since a non-linear case includes a linear one, learning non-linear sparse causal
models jointly with a representation is NP-hard as well.

While it was shown [22] that finding the causal graph without a decoder is not NP-hard, the
learned representation makes it NP-hard.

Indeed, consider the linear dynamics ft+1 = Mfft +Maat, where Mf and Ma are matrices
of sizes f × f and f × a. The decoder is also linear: ft = Dot where D is a matrix of size f × o.
The reconstructor R s.t. ot = Rft is linear as well and has size o × f . In the case where f = o

and D is invertible, we can set R = D−1. Now, the model for observations is linear as well:
ot+1 = D−1 (MfDot +Maat). Since the dynamics of the environment is fixed, the matrices
Mo = D−1MfD and Mo

a = D−1Ma are determined by the environment. Therefore, our task of
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finding a sparse model in this case boils down to finding a decoder matrix D that would give the
most sparse feature transition matrix DMoD

−1 and the action transition matrix DMo
a :

‖DMoD
−1‖0 + ‖DMo

a‖0 → min
∃D−1

Now, if Mo = 0 (the environment does not have a state), the problem becomes (exactly)
Sparse Dictionary Learning [125], a known NP-hard problem. Since this is a special case of our
problem, our problem is NP-hard as well.

Another extreme Mo
a = 0 requires to find a basis given by D in which a matrix DMoD

−1 is
most sparse. If we allow for complex variables, this problem is polynomial-time computable,
as we only need to diagonalize the matrix Mo. An approximation in the real case could be the
Jordan normal form.

Note that the case of one action corresponding exactly to one feature [116, 23] means that
DMo

a has only a single element in each column. Since D transforms the columns of Mo
a , in this

linear example, it would mean that the columns ofMo
a are collinear, and we can findD by finding

sets of collinear vectors in Mo
a in polynomial time.

3.2.10 Optimization schemes

Now, we have a number of losses (see Figure 3.7 for a diagram of all components) that we would
like to minimize together

Lsparse → min
P

Lrec → min
D,R

Lfit,feat → min
D,M,P,R

Lfit,obs → min
D,M,P,R

(3.6)

Ideally, we would like to find a point which jointly minimizes all of these losses. In the case of
a deterministic environment, it is possible to achieve all of the losses being 0, Lsparse having the
minimal possible discrete value.

The traditional practical reformulation of this problem in terms of a Machine Learning
problem would result in a loss consisting of two components: one to fit the parameters of the
posterior to the data, and one to regularize the model for sparsity, with a coefficient λ controlling
how "strong" is the posterior [110]. Such an approach, however, requires to "guess" the parameter
λ [87, 127]. A much more convenient way is to either guess the target number of edges in the graph
K(B), or the losses constraint Li ≤ ci for i ∈ {fitobs, fitfeat, rec}. We present the approaches
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below:

• Linear combination of losses with constant coefficients:

L = λsparse · Lsparse + λfit,feat · Lfit,feat + λfit,obs · Lfit,obs + λrec · Lrec → min
D,M,R,P

(3.7)

• Constrained problem with sparsity guess:

min
D,M,R,P

λfit,feat · Lfit,feat + λfit,obs · Lfit,obs + λrec · Lrec
s.t. Lsparse ≤ csparse

(3.8)

• Constrained problem with fit guess and a linear combination:

min
D,M,R,P

Lsparse

s.t. λfit,feat · Lfit,feat + λfit,obs · Lfit,obs + λrec · Lrec ≤ cfit,comb
(3.9)

• Constrained problem with granular fit guess:

min
D,M,R,P

Lsparse

s.t. Lfit,feat ≤ cfit,feat
s.t. Lfit,obs ≤ cfit,obs
s.t. Lrec ≤ crec

(3.10)

• If the target sparsity is known, a projection [26] to the l1 simplex can be applied, possibly
via the proximal gradient descent method [30].

• Adaptive sparsity [35] with a multiplicative update for the λ parameter given the recon-
struction losses. Given a target constraint for the linear combination of all losses but the
sparsity loss L\sparse ≤ ε, we update the parameter λsparse in Equation 3.7. If L\sparse ≤ ε,
we increase λsparse := λsparse · (1 + δ), and otherwise decrease it λsparse := λsparse · (1− δ).
We note that this approach is ideologically similar to the Lagrangian update, but does not
consider the magnitude of the reconstruction loss compared to the threshold.

We compare the versions 3.7, 3.8, 3.9, 3.10 in chapter 5.

In terms of the ease of use, Equation 3.10 requires least knowledge about the problem. The
parameters λ, if set manually, have a drastic effect on the quality of the solution. In contrast, in
Equation 3.10 we only set the relative thresholds for the losses (values less than 1), and obtain
the most sparse causal graph allowing for such a loss.
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Solving constrained problems. To solve the constrained problems with gradient descent
we use the Lagrange primal-dual method [3]. We consider the Lagrange function for the Equa-
tion 3.10:

Lagrange = Lsparse + λfit,feat(Lfit,feat − cfit,feat) + λfit,obs(Lfit,obs − cfit,obs) + λrec(Lrec − crec)

We note that solving Equation 3.10 corresponds to solving

min
D,M,R,P

max
{λi≥0}

Lagrange, i ∈ {fitfeat, fitobs, rec} (3.11)

Indeed, an an optimal point of Equation 3.10 is a saddle point of Equation 3.11 [44]. Roughly
speaking, this happens because if a constraint is violated, any λ > 0 results in an infinite value of
the loss.

To solve this problem, a primal-dual descent-ascent method can be applied [44] (here x =

(D,M,R, P ) – the parameters of all neural networks):

xt+1 = x− η ∂Lagrange∂x

λi = λi + η
∂Lagrange

∂λi
, i ∈ {fitfeat, fitobs, rec} (3.12)

The algorithm has the following intuitive interpretation. Suppose that λi is small, and i′th
constraint is violated:Li > ci. Since ∂Lagrange

∂λi
= Li−ci > 0, the parameter λi would increase. If, in

contrast, the constraint has a slack (is not violated) and Li < ci, the parameter λi would decrease
to allow optimizing for the objective Lsparse. Therefore, we expect the following dynamics: first,
the algorithm would turn most of the features on in order to satisfy the constraints, and then it
would optimize for sparsity.

If we apply this algorithm for the other (symmetric) formulation of our problem (Equa-
tion 3.8), it would first disable features, and then, once the target sparsity level was reached, it
would care about fitting the reconstructor and the SCM functions.

41



Chapter 4

Implementation

In this chapter we discuss the specific of our implementation of CauseOccam. We touch such
issues as the initialization of the probability values, tips and know-how during training, and the
project structure.

4.0.1 Initialization

We initialize the probability matrix to be an identity for the features (a feature only affects itself),
and to a full matrix for the rest (actions, reward and done). We compare this method to initializing
with all zeros, all ones, or a random initialization in the next section

4.0.2 Metrics

In order to assess the quality of the solution, we track the following quantities:

• Sparsity gap. We compute Lfit with the current mask B ∼ Be(P ), as well as with a fully-
enabled mask (or the complete causal graph) Bxx′ = 1. This gives losses Lp = Lpfit and

Lfull = Lp:=1
fit .

Now, we define ∆add
sparse = Lp−Lfull. This quantity is positive if the model is fit well (adding

features should not worsen the prediction quality). The value of this metric shows how well
feature selection has worked: if the value is high, it means that some of the required for
prediction features are currently disabled (or, that the model is not fit enough).

A multiplicative version ∆mult
sparse =

Lp−Lfull
Lp

. This value is positive when ∆add is positive, and
this value is less than 1, because Lfull > 0
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• Number of edges in the graph, or the number of large components in the matrix P . We com-
pute a k-means clustering1 in 1-dimensional space of all probabilities {Pxx′}x∈Xin,x′∈Xout .
This gives a threshold τ ∈ [0, 1]. Next, we select the pairs (x, x′) such that Pxx′ > τ . This
gives the answer causal graph, and the number of non-zero components.

• Total entropy of distributions Be(Pxx′). This quantity should be low at the end of training,
because all features should be either turned on or off. At the end, we also expect it to be
low, as only the important features have P ≈ 1, and the rest have P ≈ 0. In the middle of
the training, this quantity must increase.

4.0.3 Separate networks to predict pixels and features

Since we would like our features to be disentangled (corresponding to different things), there is
(by definition) no benefit of multi-task learning. In our experiments (see chapter 5) we show that
multi-task learning harms convergence speed in case if the tasks are not related. We explain it by
the fact that a shared model has layers that are used by all tasks. If the tasks are not related, it is
hard for gradient descent to "split" the neurons between tasks, as all of them "want" to use the
neurons at a layer. The same applies to the reconstructor (predicting weakly correlated pixels in
a toy grid world), and the decoder (predicting features that are disentangled)2. This approach
can be found in [74]

In order to implement the separate networks we use the einsum operator in PyTorch to
implement "vectorized" fully-connected networks.

4.0.4 Project code structure

The code can be found in our https://github.com/sergeivolodin/causality-disentanglement-rl.
The code uses gin config files for modular configuration, ray tune for hyperparameter tuning,
Tensorboard for tracking metrics real-time, and Sacred to save all the data from all experiments.
Parallel data collection is implemented with ray, and hyperparameter tuning studies are done
with ray tune. The code has function-level and class-level documentation, unit- and integration
tests, with continuous integration on GitHub.

1A simple thresholding with p = 0.5 would suffice to obtain the final graph, however, the benefit of K-means is
that it works even when the training is not fully complete, and the probabilities are not fully pmin or 1. This allows the
see visually the preliminary results while training and quickly understand if the trial is likely to be successful.

2In case of a convolutional decoder, the convolutional layers are shared, but the subsequent fully-connected layers
are not. Decoding the image is a shared task, but decoding features from that representation is not
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4.0.5 Data collection and the true distribution

We run k parallel data collection processes with ray, and aggregate the data in one ring buffer
process. Each mini-batch is sampled as random steps from all of the collected episodes and given
to the learner class. The ring buffer process maintains the ratio of collected steps to sampled
steps to be at least a constant fraction ζ = 0.5 to prevent overfitting to only collected steps.

We note that this does not result in a true distribution Eh∼(µ↔π)Et∼Uniform([T ]). The true
distribution requires us to sample one episode, select a random step, and then discard the
rest of the episode. Effectively, it would require to set ζ = EhT : we sample T times more steps
than "required". This would slow down the convergence significantly. In a mini-batch from
the true distribution, all the steps are likely to be from different episodes. This is important for
procedurally-generated environments which have a different layout for each new episode.

4.0.6 Number of optimizers

Consider the loss from Equation 3.7. It depends on multiple groups of variables: the decoder
D, the model M , the reconstructor R, and the matrix of probabilities P . We test two options for
optimizing L:

• One optimizer, updating each group of variables at every iteration.

• 4 optimizers, each updating one of {D,M,R, P}, and doing multiple steps at a time. This
corresponds to finding the optimum a bit more precisely for one group of parameters. The
rationale is the following. Since for a single group of parameters (such as M ), the problem
looks more like supervised learning (the model receives a stationary distribution of inputs,
and has to fit a stationary distribution of outputs), the problem becomes more like what
neural networks are well-tested at – supervised learning, albeit only for a few iterations.

4.0.7 Time-scale separation for Lagrange multipliers

Sometimes the order of magnitude of λi in Equation 3.10 or Equation 3.9 needs to be changed
significantly. For example, the value of the sparsity has recently decreased significantly, which
leads to a much bigger emphasis on the constraints. We need to decrease the Lagrange multi-
plier, or, otherwise, too little emphasis is put on decreasing sparsity even more. With standard
parameterization, λi would decrease exponentially like in standard Gradient Descent.

If we reparameterize λi =
√
µi, or λi = µ2i or λi = exp(µi), the parameter λi would change

slower (in the first two cases) or faster (in the last two cases). Such a difference cannot be achieved
by simply changing the learning rate for λi, as such modifications would only change the "slope
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of the line", while reparameterization changes the asymptotic behavior (for example, a line vs. a
quadratic function).

A result shows that a sufficient time-scale separation is crucial [42]. [104] considers a similar
bi-level problems as a Stackelberg game (where the follower adapts to the leader). The takeaway
is to update the follower faster. We achieve this by doing more optimization steps for the decoder
and the reconstructor, and less for the model.

Given a single batch of data at epoch i, we try the following optimization schemes:

1. Updating all parameters at every epoch i

2. Updating the model for τm epochs, then the decoder for τd epochs, then the reconstructor
for τr epochs.

Empirically, the last approach works better.
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Chapter 5

Evaluation

In this section, we present the results of running CauseOccam on a number of benchmark
environment that we develop, as well as on established baselines (such as the pure-navigation
grid-world). We denote the resulting graph given by the algorithm as Ĝx′x for whether there is an
edge from a cause variable (one at the current time-step) x ∈ Xin = {f1, ..., ff , a1, ..., aa} to an
effect variable (one at the next time-step) x′ ∈ Xout = {f1, ..., ff , r, d} (see chapter 3). The true
causal graph for an environment (if exists) is denoted as Gx′x. The matrices Gx′x and Ĝx′x have
binary valuesGx′x ∈ {0, 1}. 1 means that the edge is present, and 0 means that the edge is absent.
The total number of edges is K(G) =

∑
x∈Xin

∑
x′∈Xout

Gx′x. To obtain Ĝ from P , a thresholding

algorithm (K-Means) is applied (see chapter 4 and chapter 3).

5.1 Environments

We describe the environments that we develop for this project, as well as established bench-
marks. Each environment tests a particular aspect of learning causal graphs. The SparseMatrix
environment considers a case of correlated features in which each action can affect multiple
features. VectorIncrement has a simple dynamics, but the observations are encoded in pixel
space. KeyChest environment is a grid-world with variable complexity with both frequently
changing and hard-to-change features.

5.1.1 SparseMatrix(n, k) environment

The simplest environment we consider is SparseMatrix(n, k). Given the dimensionality of the
space, we randomly sample a matrix A ∈ Rn×n at the initialization of the environment (once per
training session, i.e. the matrix is the same after a reset()).
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The matrix A is sampled to have k ≥ n non-zero component and that it is non-degenerate.
We first permute the numbers [n], and then set Aij := ±1. After that, elements k− n are added to
random "free" (zero) spots Aij := ±1.

At each episode, the state of the environment is initialized as si1 ∼ N(0, 1) for i ∈ [n]. At each
time-step, the state is multiplied by the transition matrix:

st+1 = Ast

The actions are ignored for this environment, and the reward is always 0. An encoder is not
applied, i.e. the environment’s observation is the state.

The true causal graph (without a decoder) for this environment always equals to non-zero
components of the transition matrix: Gtruefifj

= 1Aij 6=0.

Additionally, we add a sparse random matrix influencing actions. To make the effect of actions
non-linear, we only apply actions to positive state components:

s̃t+1 = Ast, s
i
t+1 = 1s̃t+1>0 ·

∑
j

Bija
j
t

Figure 5.1: SparseMatrix(3, 4) environment for the given A

Example 5.1.1. If we take n = 3 and the following matrix:

A =

 0 −1 0

1 0 −1

1 0 0


we obtain the causal graph shown in Figure 5.1.

Example 5.1.2. We test our approach on the following matrices for n = 5:

47



PermutedOriginal

Figure 5.2: The 5 components of the VectorIncrement environment displayed as 5× 19 images.
The left image shows the digits, and the right image shows the same observation with a fixed
permutation applied.

A =


0 0 0 −1 0

0 0 −1 0 0

−1 0 −1 0 0

0 1 0 1 0

0 0 0 0 −1

 , B =


0 0 0 0 −1

0 0 0 1 −1

−1 −1 0 0 0

1 0 0 0 0

0 0 1 0 0



5.1.2 VectorIncrement(n) environment

The state has n components, and there are n actions. At the beginning, the state is a zero vector
s1 = 0 ∈ Rn. Executing action i results in an increment in the i’th component of the state vector:

sjt+1 =

{
sjt , a 6= j

sjt + 1, a = j

The reward is given when the lowest component is incremented. A somewhat optimal strategy
is to stay close to the diagonal of the environment:

at = arg min{sit
∣∣i ∈ [n]}

If no encoder is applied, the ground-truth graph (without an encoder or a decoder) is given
by Gfifj = 1i=j , Gfiaj = 1i=j , Gd,fi = 1, Gd,aj = 0, Gr,fi = 1, G(r, ai) = 1 for all but one action
(we can always determine the action taken by all but one one-hot variables, since at every step
exactly one action is taken). See Figure 5.3.

The environment additionally supports rendering observations as images using pixelized
digits (see Figure 5.2), as well as optionally permuting the pixels of the observation to make it
hard for humans to play.
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reward done

Action
1-hot

variables

Features at
current/previous

time-steps

Additional
variables

Figure 5.3: The causal graph for VectorIncrement(5) without a decoder or an encoder. First,
each state component determines its own value at the next time-step (black self-loops for si).
Secondly, a corresponding action increments the state component (red line from ai to si). Finally,
all state components affect reward and done (green lines from si to reward and done), and all but
one action affect the reward (red lines from ai to reward). This one of 5 possible causal graphs for
this environment (one of the actions can be disconnected from the reward node). The number
of edges is equal to K(G) = 24 (out of 120), or K(G) = 5n− 1 out of 2n2 + 4n in the general case
of VectorIncrement(n). This family of graphs is not minimal in terms of the number of edges for
this environment.

5.1.3 KeyChest(h,w, f, c, k) environment

The environment is described fully in my previous publication [126] at ICLR CLDM 2020. h is the
height of the grid-world, and w is the width. f is the number of food items, c is the number of
chests, and k is the number of keys. The correct causal graph is shown in Figure 5.4

5.2 Learned causal graphs

5.2.1 SparseMatrix(5, 7) environment

First, we run the algorithm on the environment without an encoder. The task then simply
corresponds to selecting the relevant features. The algorithm uncovers the correct graph (see
Figure 5.6).

The results can be replicated by running the following command (about 3 minutes):

python -m sparse_causal_model_learner_rl.learner \
--n_gpus 1 --nofail \
--config sparse_causal_model_learner_rl/configs/rl_const_sparsity_obs_space.gin \
--config sparse_causal_model_learner_rl/configs/env_sm5.gin \
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Figure 5.4: The causal graph for the KeyChest environment. The actions influence the coordinates.
At each time-step, the health variable decreases, and if it is 0, the episode ends. Collected food
(player coordinates equal to the food coordinates) increases health, and food disappears. Keys
can be collected as well. A chest can only be collected in case if there are keys already collected,
and in that case the number of collected keys decreases. A lamp is toggled in case if the player is
at the button position.

health keys_collected food key chest player lamp_on lamp_off button

health keys_collected food key chest player lamp_on lamp_off button

Figure 5.5: The two consecutive time-steps (top and bottom rows) of the KeyChest environment.
The rows show the RGB render (leftmost image) and the binary object masks given as an obser-
vation. The player moved to the right and has collected a key. The health bar has decreased by 1
element.
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Figure 5.6: The learned graph for SparseMatrix(5, 7) without an encoder. Left: the resulting causal
graph. Right: the causal graph as a node adjacency matrix.

--config sparse_causal_model_learner_rl/configs/with_lagrange_dual_sparsity.gin

5.2.2 VectorIncrement(5) environment

Given the permuted pixels, the method successfully uncovers a correct causal graph, with even
fewer edges than anticipated. The results can be reproduced by running the following command
(about 7.5 hours):

python -m sparse_causal_model_learner_rl.learner \
--n_gpus 1 --nofail \
--config sparse_causal_model_learner_rl/configs/rl_const_sparsity_obs_space.gin \
--config sparse_causal_model_learner_rl/configs/env_ve5_with_rew_done.gin \
--config sparse_causal_model_learner_rl/configs/with_lagrange_dual_sparsity.gin

The correlation matrix between the decoder features and the digits is shown in Figure 5.7.
The step variable can be obtained from one of the features with R2 = 0.989 and the p-value
p < 10−4.

The Figure 5.9 shows the learned graph for the environment. It can be seen that the graph
is simpler than expected (Figure 5.3). Indeed, while a3, a1, a4, a0 are associated with features
f1, f3, f4, f0, the action a2 does not correspond to any feature. In addition, only the feature f2
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Figure 5.7: The feature correlation matrix for the learned model for the VectorIncrement(5)
environment with pixels as observations. f1, ..., f6 are the learned features (f6 is a constant
feature and can be ignored), d1, ..., d5 are the ground truth values of the state components, and
stepis the time-step. The block-diagonal entries show that there is weak correlation between
digits, and no strong correlations between features. In contrast, the correlations between features
and digits are high: d1 is correlated with f1, d4 with f2, step with f3, and d5 with f5.
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Figure 5.8: The losses and parameters when running CauseOccam on VectorIncrement(5). The
leftmost chart shows the Lagrange multiplier associated with the fit constraintLfit,feat ≤ cfit,feat.
The second chart shows the number of non-zero components in the node adjacency matrix. The
third chart shows the adaptive sparsity gap, and the final chart shows the fit loss Lfit,feat.
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Figure 5.9: The learned graph for VectorIncrement(5). Left: the resulting causal graph. Right: the
causal graph as a node adjacency matrix.

determines done. This is actually correct: indeed, done can be computed via the current time-step,
regardless of the values of the state components. The value of the state component associated
with a2 can be computed by subtracting all the other features from the time feature. Additionally,
a3 does not affect the reward. This is also correct, because at each time-step at least one action is
taken. Therefore, we can determine that a3 is taken by noticing that no other action is taken.

The Figure 5.8 shows the training curves during the run of CauseOccam. First, the Lagrange
multiplier increases up to its maximal value of 103, which corresponds to the phase where
the initial (non-sparse) model is learned. Next, the parameter decreases and oscillates with
decreasing magnitude. This corresponds to selecting the right edges in the graph. The oscillation
in the Lagrange multiplier cause the values of Pi to oscillate as well, which leads to an oscillation
in the fit loss. Note that the sparsity gap is also oscillating, which means that the oscillation is
caused solely by the change in the probabilities (and not in the quality of the model given all the
features).

5.2.3 KeyChest(5, 5) environment

We first run the algorithm on a vanilla grid-world (just the coordinate dynamics). The results can
be reproduced via running the following command (takes about 3 minutes):

python -m sparse_causal_model_learner_rl.learner \
--n_gpus 1 --nofail \
--config sparse_causal_model_learner_rl/configs/rl_const_sparsity_obs_space.gin \
--config sparse_causal_model_learner_rl/configs/env_gw.gin \
--config sparse_causal_model_learner_rl/configs/with_lagrange_dual_sparsity.gin

The Figure 5.10 shows the resulting learned causal graph which is correct. Indeed, features
correspond to the x and y coordinates, since actions are grouped into (left, right) and (down, up).
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Figure 5.10: The learned graph for KeyChest without any objects or indicators (just the coordi-
nate). Left: the resulting causal graph. Right: the causal graph as a node adjacency matrix.

f00 f01

f02 f03 consta00 a01 a02 a03

Figure 5.11: The learned graph for KeyChest with only the health bar given along with the player
position mask.

The method also succeeds in recovering the health variable (Figure 5.11). The results can be
reproduced in 6 hours via

python -m sparse_causal_model_learner_rl.learner \
--n_gpus 1 --nofail \
--config sparse_causal_model_learner_rl/configs/rl_const_sparsity_obs_space.gin \
--config keychest/config/5x5_onlycoord_obs.gin \
--config sparse_causal_model_learner_rl/configs/env_kc_5x5_onlycoord_obs.gin \
--config sparse_causal_model_learner_rl/configs/with_lagrange_dual_sparsity.gin

5.3 Ablation study for VectorIncrement(2)

We run a hyperparameter study with 140 trials on VectorIncrement(2) on pixels. The search is
over the following modes (with respect to the original configuration):

1. no_mask. The binary mask Bi is not given to the model

2. no_relative. Instead of the relative MSE loss (chapter 3), the regular Mean-Squared Error
loss is used
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3. no_rotation. The additional transforms (see chapter 3) are not applied

4. single_model_dec. The decoder is a single network, instead of a separate network for each
feature.

5. single_model_rec. The reconstructor is a single network instead of a separate network for
each pixel.

The results are shown in Figure 5.12. First, it shows that removing the additional transfor-
mation ("rotation") improves the results (losses are lower when comparing no_rotation to
original) for this problem (in contrast, for the KeyChest environment, the version without
rotation converges much slower). Secondly, not giving the mask to the model, or not using the
relative loss increases all the target metrics, compared to the original configuration. Using a
multiple networks instead of a single network is generally improving the metrics, except for the
additional loss.

Initializing the probabilities with 0 or 1 leads to similar results, but with more time required
to fit the data.

5.4 Failure mode analysis

The main issues are that either the model did not reach the target quality fit, or the search is
stuck in a local minima. For example, running the method even on the sm5 environment with a
linear encoder does not always provide satisfactory results: the answer graph has more edges
than possible.
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Figure 5.12: The results of the ablation study. Each bar chart represents the metrics gathered
during the 140 trials with difference modes. The modes are on the x-axis (see text for description),
and the quantity is on the y axis. The charts (from top to bottom) represent: 1) The relative MSE
quality of predicting r and d given the selected features 2) The observation fit exploration loss 3)
Multiplicative sparsity gap 4) Reconstructor prediction accuracy
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Chapter 6

Related Work

Symbolic approaches. [33, 32, 39] considers a symbolic reasoning approach. [69] considers
grouping states into "meta states". [23] defines "prototype" states. [132] cluster the environment’s
state space. [43] clusters time series and fits a Markov model in this space.

The main difference between symbolic approaches and causal graphs is that while the
structure of the graph is discrete, the transition functions that determine the nodes’ values can
be arbitrary neural networks. Our work can be seen as complementary to the case when the
transition dynamics is more complex than switching between prototype states (for example,
continuous state-spaces), or states cannot be clustered using traditional approaches.

Other approaches to RL or time series interpretability. [116] consider a model where one
action corresponds to a change in one feature. Our work generalize this approach (see chapter 3).

[40, 91, 89] use the tools of causal reasoning to interpret agents. Our work can be seen as
complementary, as [40, 91, 89] use an existing causal graph of the environment to provide
explanation. In contrast, our work focuses on learning the graph.

A number of approaches involve sparse feature vectors for interpretability [128, 136, 120, 18,
31, 85, 65, 103, 100, 83, 101, 41, 64]. See chapter 3 for discussion.

[134] introduce an attention module inside a Reinforcement Learning agent (inside the policy
and the value networks), allowing it to solve tasks not solved by a simple MLP, because the task
requires relational reasoning. A similar technique can be seen in [52] to solve visual reasoning
tasks (similar to IQ tests). Using an attention mechanism could be the next step for our project
(see chapter 7).

Natural language for explanations. [89, 38] generate natural language explanations given a
causal model of the environment. Our work can be seen as complementary to [89]: we learn the
causal graph that can be used as input for that method.
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Causal modeling. [10] apply a linear decoder and learn a sparse linear model in the context
of Granger causality. In our project, we focus on the non-linear case.

A number of approaches learn the sparse graph, but without a learned representation (with-
out a decoder network) [72, 47, 74, 19, 64, 11]. In this thesis, we focus on learning the representa-
tion as well.

[72, 97] propose to learn a distribution over causal graph in a mean-field way (all edges are
independent and modeled as Bernoulli distribution). Our project uses this technique (see 2).

[17] extend this approach to modeling interventions, and this line of work can be used to de-
sign better exploration techniques, when combined with learning sparse graphs (see chapter 7).

[66] learn causal graphs in the context of RL. Our work can be seen as an extension of this
project with a learned decoder, and the cases where sparsity is important.

[95] implicitly code for the edges of a causal graph in terms of a neural network, i.e. the
network predicts which edges to add or remove. In contrast, we use a matrix of probabilities
which determines the node adjacency matrix. Using the approach of [95] could yield potential
improvements in our framework.

[68, 113, 76, 20] learn a causal model jointly with a decoder, but do not evaluate the sparsity.
In our project, we focus on the sparsity as well as on jointly learning the model with a decoder.

Graph neural networks. [11] proposes Graph Neural Networks [135] (GNNs) based on the
idea of thoughts as graphs of connections between abstract concepts. [123] GNNs by allowing a
linear (in the number of nodes) number the edges to be learned.

[25] use GNNs to discover unknown laws of dynamics. They apply symbolic regression to the
node and edge models of the GNN, to extract the symbolic expression. The model is used for
pairwise forces in a particle environment, and for discovering the physical laws of Dark Matter
in an automated way. The symbolic expression framework (Eureqa) generalizes better than the
non-symbolic model it was extracted from. l1 sparsity is used in the GNN to ease the problem for
the symbolic regression.

One important difference between GNNs and Structural Causal Models (SCMs) used in this
project is that the graph itself (as a node adjacency matrix) is usually fixed for GNNs. In contrast,
to learn the SCM is to learn the graph of dependencies.

[119] uses contrastive losses to obtain a representation and a model in the latent space. [75]
work on learning abstract representations from pixels in 3D environments and in Atari using
Graph neural networks, leading to more interpretable world (environment) models. Using the
contrastive loss in our approach could yield faster convergence of the world model, and using
sparsity constraints along with the approach of [75] could lead to better interpretability.
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Chapter 7

Conclusion

We present the first (up to our knowledge) system that learns a sparse causal graph of a Rein-
forcement Learning environment with a learned feature representation, from raw pixels. We test
our approach on a set of benchmarks and show a success of the proposed approach: it outputs
an interpretable causal graph and allows to understand the environment. Using this approach
could yield increased interpretability of Reinforcement Learning agents if used together with
already existing methods requiring a causal graph as an input.

To obtain the meaning of the features learned by our system, existing interpretability tech-
niques based on feature attribution and analyzing neural network circuits [48] can be used.

The main drawback of the system is a higher train the time to fit a model of the environment,
and then adjust the decoder to "sparsify" the model. Better (more adaptive) training procedures
could speed up the convergence and increase the range of applicability of our approach.

7.1 Future work

A natural extension is to consider more complex environments, and multiple time-step de-
pendencies, either by stacking several subsequent observations together, or by using recurrent
neural networks with structured sparsity, or by using an attention mechanism in the time axis
[96]. It would be interesting to apply our approach to natural languages and other challenging
not-yet-fully-understood time series and environments such as the protein folding problem.
This could yield novel insights into the latent nature of these problems.

Combining the abstract causal concept discovery with doing interventions using policies
[126] using an RL agent could yield more structured exploration via interventions on the causal
graph [54, 46, 98, 27], and, thus, faster convergence time.
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To reduce training time, it might be beneficial to contrastive losses [119, 75, 93] instead of the
reconstructor. However, this did not work as well as the reconstruction loss in the observation
space in this project.

7.1.1 Sparse causal models and the problem of consciousness

The connection to the problem of consciousness stems comes from two directions. First, this
work can be seen as an implementation of the [13] hypothesis. Indeed, we are learning the most
sparse model in the latent space, along with learning the representations. The paper explicitly
defines latent feature model simplicity as one of the components of the consciousness prior [13].

The fact that our approach works (albeit for simple environments) proves the merit of this
hypothesis and shows that it could be used to explain consciousness: humans indeed can be
learning abstract representations (at least partially by the virtue of) learning a space in which
the dynamics becomes simple. For example, it is beneficial to learn a variable "time", because
this single variable allows to predict if the sun rises, if the metro is open, or if a predator is likely
to be sleeping.

Our learned representations can be used to ground the agent in natural language. Indeed, if
we already have learned that there are several abstract concepts in the game such as "number of
keys collected" or the "health of the player", it would suffice to only give two sentences associated
with the player collecting a key or food. In contrast, a vanilla CNN given the same sentences at
the same time would likely associate them with raw pixel state, and a policy network would likely
associate them with the current action taken.

In this way, we shed (a bit of) light onto the easy problem of consciousness: the abstract
concepts can come before language, in an unsupervised way, and the first words of language
are simply mapped to already existing concepts using Hebbian learning (word and the stimulus
occur together). Next, this process could be bootstrapped, since presence of words becomes
new variables in the causal model, and the process is repeated, with a more powerful model
and a more powerful set of words learned. Asking questions like "what is X?" can be seen as
performing interventions on the causal graph: we know that asking "what is X" is likely to result
in novel data (a learned way to optimize for an objective), and an X is a novel variable which is
still largely unused. Therefore, the agent intervenes setting do(ask ’what is X’) and samples data
from a novel distribution.

While the grounding technique is known for a long time [57], my work provides a proof that
abstract concepts can be learned before language from raw pixels, just by optimizing for the
inner model simplicity – a simple and beautiful enough principle to be innate to the brain [7].
Other projects are usually involving more sophisticated (and less simple) priors, such that the
action only increments one component, or that the dynamics in the latent space is linear, or that
the environment is a 2D world.

60



Secondly, I express a hypothesis that a learned representation is crucial to the Integrated
Information Theory, or any other causal theory of consciousness [117]. First, the theory does not
seem to specify at which level of abstraction it should be applied – at the level of atoms, or at
the level of molecules? Or, maybe, at the level of individual electrical components of a computer
that we examine? Specifically, it is unclear what should be the "nodes", "factors" or "variables"
in the model, the dependencies between which we are to examine to compute the ϕ. This leads
to the value of ϕ potentially being arbitrarily high, if a bijective transformation is applied before
the analysis [37].

If we declare that we need to first apply a transformation in which the graph becomes most
sparse (which intuitively is connected to the value of ϕ: a sparse graph will likely have less edges
[111, 67], or even becomes two independent components instead). Next, we compute ϕ. This
seems to resolve the issue raised in [37], albeit, in a bit of an ad-hoc fashion. More importantly,
this resolves the ambiguity of the level of abstraction the theory should be applied: if we apply a
decoder first and optimize for sparsity (or, maybe, low ϕ), the raw wave-function can be mapped
into the state of molecules – and the two representations are (somewhat) bijective.

Because of this connection between ϕ and sparsity, our approach can be seen as approxi-
mately computing the ϕ for the environment, in other words, computing how conscious it is.
With this in mind, the VectorIncrement environment, for example, is not conscious: its causal
graph is a union of two connected components (the "done" and the "time" is not connected
to everything else), but can be seen as two "conscious" components. In contrast, the KeyChest
environment’s graph has only one connected component, and, thus, potentially has a non-0 ϕ
as a whole.

7.1.2 Sparse causal models and the AIXI framework

A quick overview of the AIXI framework is given in Appendix A. First, we note that while in theory,
penalizing for model’s complexity is inevitable (see section A.1), for practical cases the total
model complexity is limited by the hardware, and, therefore, we are free to favor more complex
models over simpler ones.

Having the simplicity prior arguably helps the convergence speed. It is an interesting direc-
tion for future work to potentially prove a bound similar to the Solomonoff’s bound, but for
computable environments. Indeed, we are using the simplicity prior, and our algorithm can be
seen as doing approximate Bayesian inference.

"Vanilla" neural networks arguably do not have such a simplicity prior "built-in", as they
are likely to learn spurious correlations [62]. Therefore, adding the simplicity prior explicitly (in
terms of structural sparsity) could give interesting theoretical results.

It is left for future work to test if using our approach leads to better sample-efficiency of learn-
ing dynamics model of RL environments. Our framework can be seen as another approximation
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[124] to the true uncomputable AIXI framework, in a sense that we are defining a proxy for the
model complexity in terms of its structure as K(M) = ‖B‖0.

7.1.3 Other future directions

The prior to have a simple model could make the agent require less data to train: since it expects
the underlying dynamics to be simple, it will converge to the true model faster, because a more
complex model (that a regular agent is likely to take as a first guess) will be discarded.

Next, having a disentangled representation with independent mechanisms allows to reuse
components in the model [12, 122, 34, 49], and learn it even faster. Many environments share the
same dynamics – for example, navigating in a 2-dimensional maze with 4 actions (up, down, left,
right). The learned graph would be the same for all such environments (up and down actions
affecting the vertical coordinate variable, and the left-right actions the horizontal one). We can
store the commonly-occurring patterns like this one (another example is the velocity of an object
being mirrored when colliding with an obstacle), we could represent every environment as a
number of "stock" components, or recurrent independent mechanisms (coordinate variables,
colliding objects) with parameters, with a small number of custom ones. Such an approach
would lead to faster learning, as the agent would "guess" a component much faster, compared
to learning it from scratch.

Finally, the method can be applied to challenging environments interesting in their own right.
For example, the AlphaFold [4] algorithm was applied to the protein folding problem. The model
of protein folding that the agent learns is (a prori) not interpretable. However, using out method,
we could obtain a sparse causal graph representing the dynamics of protein folding, which
could be useful, because the problem becomes simpler. Indeed, our approach could discover
interesting regularities in the way proteins fold, in terms of the final state depending only on the
few variables in the initial state – automating the process of discovery of the scientific laws of the
natural world.
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Appendix A

Optional background: Solomonoff
induction and the AIXI framework

In this section, we consider the theoretical Solomonoff induction framework, which gives a
convergence bound for Supervised learning for sequence prediction, along with the AIXI frame-
work [59, 80], which extends this approach to RL. The frameworks described in this section
do not provide direct practical results, as they are uncomputable [59] (there is no algorithm
implementing them exactly). There exist computable approximations [124].

A.1 Solomonoff induction

We consider the class of all computable (having a probabilistic Turing machine that successively
prints the string onto the tape) infinite distributions over the sequences of binary strings {µ}.
We assume that the true distribution is a member of this class. We are given symbols xt ∈ {0, 1}
one-by-one, and the task is to predict the next symbol given the previous ones. We apply the
Bayesian approach: given a prior ξ(µ) ∈ [0, 1] over the sequences µ, we would like to find the
posterior ξ|(x1, ..., xt) over the sequences given the observed data x1, ..., xt. We denote as K(µ)

the length of the shortest program that generates µ1.

It can be shown [56, 118] that any possible prior has to decay as 2−αK(µ)+β as K(µ) → ∞.
Indeed, while the prior distribution has to sum up to 1, the number of programs with length n
increases exponentially.

Solomonoff has shown in 1964 that with a prior defined as ξ(µ) ∼ 2−K(µ), Bayesian inference
results in a fast convergence to the true distribution. The squared expected distance in the space
of all sequences, between the posterior ξ|(x1, ..., xt−1) given the data from the first t−1 time-steps

1See [59] for a fully formal definition
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x<t = (x1, ..., xt), and the true distribution µ is bounded via the complexity (See [59], Equation
18):

∞∑
t=1

∑
x<t

µ(x<t) (ξ(xt = 0, x<t)− µ(xt = 0, x<t))
2 ≤ const ·K(µ)

Roughly speaking, the algorithm will make approximately K(µ) mistakes, when learning a
sequence of complexity K(µ).

A.2 The AIXI framework

AIXI [59] is an extension of Solomonoff induction to the problem of Reinforcement Learning.
We set xt = (ot, rt) – the observation and the reward given by the environment. The action is
selected greedily to optimize for the expected reward given the posterior (see Equation 23 in
[59]):

at+1 = arg max
a

Ext+1,xt+2,...∼ξ|(x1,...,xt)V≥t

Roughly speaking, this equation means that we first select the simplest environments (be-
cause the prior ξ penalizes for sequence’s complexity), that fit the observed data well. Having
such a model, we simulate the future using tree search, and select an action optimizing for the
discounted value.

While the AIXI agent has certain optimality guarantees, they are weak [81], due to the hardness
of exploration in RL. Approaches [82] exist to deal with this issue.
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